Herschel -ATLAS: The dust energy balance in the edge-on spiral galaxy UGC 4754
Astronomy and Astrophysics 518:8 (2010)
Abstract:
We use Herschel PACS and SPIRE observations of the edge-on spiral galaxy UGC 4754, taken as part of the H-ATLAS SDP observations, to investigate the dust energy balance in this galaxy. We build detailed SKIRT radiative models based on SDSS and UKIDSS maps and use these models to predict the far-infrared emission. We find that our radiative transfer model underestimates the observed FIR emission by a factor of two to three. Similar discrepancies have been found for other edge-on spiral galaxies based on IRAS, ISO, and SCUBA data. Thanks to the good sampling of the SED at FIR wavelengths, we can rule out an underestimation of the FIR emissivity as the cause for this discrepancy. Instead we support highly obscured star formation that contributes little to the optical extinction as a more probable explanation. © 2010 ESO.In-flight calibration of the Herschel -SPIRE instrument
Astronomy and Astrophysics 518:4 (2010)
Abstract:
SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194-671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the "standard" pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards. © 2010 ESO.System study of EPICS, the exoplanets imager for the E-ELT
Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)
Abstract:
ESO and a large European consortium completed the phase-A study of EPICS, an instrument dedicated to exoplanets direct imaging for the EELT. The very ambitious science goals of EPICS, the imaging of reflected light of mature gas giant exoplanets around bright stars, sets extremely strong requirements in terms of instrumental contrast achievable. The segmented nature of an ELT appears as a very large source of quasi-static high order speckles that can impair the detection of faint sources with small brightness contrast with respect to their parent star. The paper shows how the overall system has been designed in order to maximize the efficiency of quasi-static speckles rejection by calibration and post-processing using the spectral and polarization dependency of light waves. The trade-offs that led to the choice of the concepts for common path and diffraction suppression system is presented. The performance of the instrument is predicted using simulations of the extreme Adaptive Optics system and polychromatic wave-front propagation through the various optical elements. © 2010 SPIE.The gemini NICI planet-finding campaign
Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)
Abstract:
Our team is carrying out a multi-year observing program to directly image and characterize young extrasolar planets using the Near-Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1-meter telescope. NICI is the first instrument on a large telescope designed from the outset for high-contrast imaging, comprising a high-performance curvature adaptive optics (AO) system with a simultaneous dual-channel coronagraphic imager. Combined, with state-of-the-art AO observing methods and data processing, NICI typically achieves ≈2 magnitudes better contrast compared to previous ground-based or space-based planet-finding efforts, at separations inside of ≈2". In preparation for the Campaign, we carried out efforts to identify previously unrecognized, young stars as targets, to develop a rigorous quantitative method, for constructing our observing strategy, and to optimize the combination of angular differential imaging and spectral differential imaging. The Planet-Finding Campaign is in its second year, with first-epoch imaging of 174 stars already obtained out of a total sample of 300 stars. We describe the Campaign's goals, design, target selection, implementation, on-sky performance, and preliminary results. The NICI Planet-Finding Campaign represents the largest and most sensitive imaging survey to date for massive (≳1 MJup) planets around other stars. Upon completion, the Campaign will establish the best measurements to date on the properties of young gas-giant planets at ≳5-10 AU separations. Finally, Campaign discoveries will be well-suited to long-term orbital monitoring and detailed spectrophotometric followup with next-generation planet-finding instruments. © 2010 SPIE.Weighing black holes using open-loop focus corrections for LGS-AO observations of galaxy nuclei at Gemini Observatory
Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)