How Does Feedback Affect Milky Way Satellite Formation?

(2011)

Authors:

Sam Geen, Adrianne Slyz, Julien Devriendt

Green Bank Telescope Zpectrometer CO(1-0) observations of the strongly lensed submillimeter galaxies From the Herschel ATLAS

Astrophysical Journal Letters 726:2 PART II (2011)

Authors:

DT Frayer, AI Harris, AJ Baker, RJ Ivison, I Smail, M Negrello, R Maddalena, I Aretxaga, M Baes, M Birkinshaw, DG Bonfield, D Burgarella, S Buttiglione, A Cava, DL Clements, A Cooray, H Dannerbauer, A Dariush, G De Zotti, JS Dunlop, L Dunne, S Dye, S Eales, J Fritz, J Gonzalez-Nuevo, D Herranz, R Hopwood, DH Hughes, E Ibar, MJ Jarvis, G Lagache, LL Leeuw, M Lopez-Caniego, S Maddox, MJ Michałlowski, A Omont, M Pohlen, E Rigby, G Rodighiero, D Scott, S Serjeant, DJB Smith, AM Swinbank, P Temi, MA Thompson, I Valtchanov, PP Van Der Werf, A Verma

Abstract:

The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) has uncovered a population of strongly lensed submillimeter galaxies (SMGs). The Zpectrometer instrument on the Green Bank Telescope (GBT) was used to measure the redshifts and constrain the masses of the cold molecular gas reservoirs for two candidate highredshift lensed sources. We derive CO(1-0) redshifts of z = 3.042 ± 0.001 and z = 2.625 ± 0.001, and measure molecular gas masses of (1-3) ×1010M⊙, corrected for lens amplification and assuming a conversion factor of α = 0.8 M ⊙ (Kkm s-1 pc2)-1. We find typical L(IR)/L'(CO) ratios of 120 ±40 and 140±50L ⊙ (Kkm s-1 pc2)-1, which are consistent with those found for local ultraluminous infrared galaxies (ULIRGs) and other high-redshift SMGs. From analysis of published data, we find no evidence for enhanced L(IR)/L'(CO(1-0)) ratios for the SMG population in comparison to local ULIRGs. The GBT results highlight the power of using the CO lines to derive blind redshifts, which is challenging for the SMGs at optical wavelengths given their high obscuration. © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A parametric physical model for the intracluster medium and its use in joint SZ/X‐ray analyses of galaxy clusters

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 410:1 (2011) 341-358

Authors:

James R Allison, Angela C Taylor, Michael E Jones, Steve Rawlings, Scott T Kay

Achieving high contrasts with slicer based integral field spectrographs

AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)

Authors:

G Salter, N Thatte, M Tecza, F Clarke

Abstract:

We demonstrate experimentally that slicer based integral field spectrographs are an attractive choice for the next generation of exoplanet direct detection instruments. By propagating a single simulated speckle though a slicer based integral field spectrograph (IFS) and performing the post processing technique of spectral deconvolution we are able to achieve a speckle rejection factor of ∼600 in broadband images (and ∼100 in individual wavelength channels) with contrasts only appearing to be limited by calibration errors in the IFS datacube. This is over an order of magnitude improvement on the current state-of-the-art and well within the requirements of EPICS (Exo Planet Imaging Camera and Spectrograph for the E-ELT) for post coronagraphic speckle rejection thus proving that slicers will not impose a limit on the achievable contrast. When using prior knowledge of the diffraction-limited size of real objects we further improve the speckle rejection factor such that it exceeds 103.

Axisymmetric mass models of S0 and spiral galaxies with boxy bulges: Mass-to-light ratios, dark matter and bars

Memorie della Societa Astronomica Italiana - Journal of the Italian Astronomical Society 18 (2011) 79-82

Authors:

MJ Williams, M Bureau, M Capppellari

Abstract:

We examine a sample of 30 edge-on spiral and S0 galaxies that have boxy and peanut-shaped bulges.We compute model stellar kinematics by solving the Jeans equations for axisymmetric mass distributions derived from K-band images. These simple models have only one free parameter: the dynamical mass-to-light ratio, which we assume is independent of radius. Given the simplicity of the modelling procedure, the model second velocity moments are strikingly good fits to the observed stellar kinematics within the extent of our kinematic data, which typically reach ∼ 0.5-1 R25 (where R25 is the optical radius), or equivalently ∼ 2-3 Re (where Re is the effective or half-light radius).We therefore find no evidence for a dominant dark matter component within the optical disk of spiral galaxies. This is equally true of the S0s in our sample, which significantly extends previous observational constraints on dark matter in these galaxies. The predicted kinematics do deviate slightly but systematically from the observations in the bulge region of most galaxies, but we argue that this is consistent with the claim that boxy and peanut-shaped bulges are bars viewed edge-on.