The X-ray spectra of the luminous LMXBs in NGC 3379: Field and globular cluster sources

Astrophysical Journal 725:2 (2010) 1805-1823

Authors:

NJ Brassington, G Fabbiano, S Blake, A Zezas, L Angelini, RL Davies, J Gallagher, V Kalogera, DW Kim, AR King, A Kundu, G Trinchieri, S Zepf

Abstract:

From a deep multi-epoch Chandra observation of the elliptical galaxy NGC 3379 we report the spectral properties of eight luminous LMXBs (LX < 1.2 × 1038 erg s-1). We also present a set of spectral simulations, produced to aid the interpretation of low-count single-component spectral modeling. These simulations demonstrate that it is possible to infer the spectral states of X-ray binaries from these simple models and thereby constrain the properties of the source. Of the eight LMXBs studied, three reside within globular clusters (GCs) and one is a confirmed field source. Due to the nature of the luminosity cut, all sources are either neutron star (NS) binaries emitting at or above the Eddington luminosity or black hole (BH) binaries. The spectra from these sources are well described by single-component models, with parameters consistent with Galactic LMXB observations, where hard-state sources have a range in photon index of 1.5-1.9 and thermally dominant (TD) sources have inner-disk temperatures between ∼0.7 and 1.55 keV. The large variability observed in the brightest GC source (LX< 4×1038 erg s-1) suggests the presence of a BH binary. At its most luminous this source is observed in a TD state with kTin = 1.5 keV, consistent with a BH mass of ∼4M ⊙. This observation provides further evidence that GCs are able to retain such massive binaries. We also observed a source transitioning from a bright state (LX ∼ 1 × 1039 erg s-1), with prominent thermal and non-thermal components, to a less luminous hard state (LX = 3.8 × 1038 erg s-1, Λ = 1.85). In its high flux emission, this source exhibits a cool-disk component of ∼0.14 keV, similar to spectra observed in some ultraluminous X-ray sources (ULXs). Such a similarity indicates a possible link between "normal" stellar-mass BHs in a high accretion state and ULXs. © 2010. The American Astronomical Society. All rights reserved.

The impact of supernovae driven winds on stream-fed protogalaxies

ArXiv 1012.2839 (2010)

Authors:

Leila C Powell, Adrianne Slyz, Julien Devriendt

Abstract:

SNe driven winds are widely thought to be very influential in the high-redshift Universe, shaping the properties of the circum-galactic medium, enriching the IGM with metals and driving the evolution of low-mass galaxies. However, it is not yet fully understood how SNe driven winds interact with their surroundings in a cosmological context, nor is it clear whether they are able to significantly impact the evolution of low-mass galaxies from which they originate by altering the amount of cold material these accrete from the cosmic web. We implement a standard Taylor-Sedov type solution, widely used in the community to depict the combined action of many SN explosions, in a cosmological resimulation of a low mass galaxy at z =9 from the 'Nut' suite. However, in contrast with previous work, we achieve a resolution high enough to capture individual SN remnants in the Taylor-Sedov phase, for which the solution provides an accurate description of the expansion. We report the development of a high-velocity, far-reaching galactic wind produced by the combined action of SNe in the main galaxy and its satellites, which are located in the same or a neighbouring dark matter halo. Despite this, we find that (i) this wind carries out very little mass (the measured outflow is of the order of a tenth of the inflow/star formation rate) and (ii) the cold gas inflow rate remains essentially unchanged from the run without SNe feedback. Moreover, there are epochs during which star formation is enhanced in the feedback run relative to its radiative cooling only counterpart. We attribute this 'positive' feedback to the metal enrichment that is present only in the former. We conclude that at very high redshift, efficient SNe feedback can drive large-scale galactic winds but does not prevent massive cold gas inflow from fuelling galaxies, resulting in long-lived episodes of intense star formation.(abridged)

The impact of supernovae driven winds on stream-fed protogalaxies

(2010)

Authors:

Leila C Powell, Adrianne Slyz, Julien Devriendt

The Atlas3D project -- I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria

(2010)

Authors:

Michele Cappellari, Eric Emsellem, Davor Krajnovic, Richard M McDermid, Nicholas Scott, GA Verdoes Kleijn, Lisa M Young, Katherine Alatalo, R Bacon, Leo Blitz, Maxime Bois, Frederic Bournaud, M Bureau, Roger L Davies, Timothy A Davis, PT de Zeeuw, Pierre-Alain Duc, Sadegh Khochfar, Harald Kuntschner, Pierre-Yves Lablanche, Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Paolo Serra, Anne-Marie Weijmans

Investigating the merger origin of early-type galaxies using ultra-deep optical images

Proceedings of the International Astronomical Union 6:S277 (2010) 238-241

Authors:

PA Duc, JC Cuillandre, K Alatalo, L Blitz, M Bois, F Bournaud, M Bureau, M Cappellari, P Côté, RL Davies, TA Davis, PT De Zeeuw, E Emsellem, L Ferrarese, E Ferriere, S Gwyn, S Khochfar, D Krajnovic, H Kuntschner, PY Lablanche, L MacArthur, RM McDermid, L Michel-Dansac, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A Weijmans, LM Young

Abstract:

The mass assembly of galaxies leaves various imprints on their surroundings, such as shells, streams and tidal tails. The frequency and properties of these fine structures depend on the mechanism driving the mass assembly: e.g. a monolithic collapse, rapid cold-gas accretion followed by violent disk instabilities, minor mergers or major dry/wet mergers. Therefore, by studying the outskirts of galaxies, one can learn about their main formation mechanism. I present here our on-going work to characterize the outskirts of Early-Type Galaxies (ETGs), which are powerful probes at low redshift of the hierarchical mass assembly of galaxies. This work relies on ultra-deep optical images obtained at CFHT with the wide-field of view MegaCam camera of field and cluster ETGs obtained as part of the ATLAS3D and NGVS projects. State of the art numerical simulations are used to interpret the data. The images reveal a wealth of unknown faint structures at levels as faint as 29 mag arcsec-2 in the g-band. Initial results for two galaxies are presented here. © Copyright International Astronomical Union 2011.