HerMES: The submillimeter spectral energy distributions of Herschel/SPIRE-detected galaxies
Astronomy and Astrophysics 518:2 (2010)
Abstract:
We present colours of sources detected with the Herschel/SPIRE instrument in deep extragalactic surveys of the Lockman Hole, Spitzer-FLS, and GOODS-N fields in three photometric bands at 250, 350 and 500 μm. We compare these with expectations from the literature and discuss associated uncertainties and biases in the SPIRE data. We identify a 500 μm flux limited selection of sources from the HerMES point source catalogue that appears free from neighbouring/blended sources in all three SPIRE bands. We compare the colours with redshift tracks of various contemporary models. Based on these spectral templates we show that regions corresponding to specific population types and redshifts can be identified better in colour-flux space. The redshift tracks as well as the colour-flux plots imply a majority of detected objects with redshifts at 1 < z < 3.5, somewhat depending on the group of model SEDs used. We also find that a population of sources with S250/S 350 < 0.8 at fluxes above 50 mJy as observed by SPIRE are not well represented by contemporary models and could consist of a mix of cold and lensed galaxies. © 2010 ESO.Herschel unveils a puzzling uniformity of distant dusty galaxies
Astronomy and Astrophysics 518:2 (2010)
Abstract:
The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved over the last 80% of the age of the Universe. We discuss possible consequences for the determination of starformation rates (SFR) and any evidence for a major change in their star-formation properties. We use Herschel deep extragalactic surveys from 100 to 500 μm to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). An extension to fainter luminosities is done by stacking images on 24 μm prior positions. We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used, e.g. at 24 μm, to identify isolated ± galaxies whose flux is not boosted by bright neighbors. Below ∼1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15 dex), therefore similar to ∼0 galaxies, over three decades in luminosity below the regime of ultra-luminous IR galaxies (ULIRGs, LIR ¡Ý 1012 L). This narrow distribution is puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of the 160 μm, 250 μm or 350 μm bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints around and above ∼150 μm (rest-frame) before Herschel on those templates. We also note that the dust temperature of luminous IR galaxies (LIRGs, LIR 10 11 L) around ∼1 is mildly colder by 10̈C15% than their local analogs and up to 20% for ULIRGs at ∼1.6 (using a single modified blackbody-fit to the peak far-IR emission with an emissivity index of ≥ = 1.5). Above z = 1.5, distant galaxies are found to exhibit a substantially larger mid-over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a hidden AGN. Two thirds of the AGNs identified in the field with a measured redshift exhibit the same behavior as purely star-forming galaxies. Hence a large fraction of AGNs harbor coeval star formation at very high SFR and in conditions similar to purely star-forming galaxies. © 2010 ESO.Herschel unveils a puzzling uniformity of distant dusty galaxies
Astronomy and Astrophysics 518:7-8 (2010)
Abstract:
The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved over the last 80% of the age of the Universe. We discuss possible consequences for the determination of starformation rates (SFR) and any evidence for a major change in their star-formation properties. We use Herschel deep extragalactic surveys from 100 to 500 μ m to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). An extension to fainter luminosities is done by stacking images on 24 μ m prior positions. We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used, e.g. at 24 μ m, to identify "isolated" galaxies whose flux is not boosted by bright neighbors. Below z ∼ 1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15 dex), therefore similar to z ∼ 0 galaxies, over three decades in luminosity below the regime of ultra-luminous IR galaxies (ULIRGs, LIR ≥ 1012 L⊙). This narrow distribution is puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of the 160 μ m, 250 μ m or 350 μ m bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints around and above ∼150 μ m (rest-frame) before Herschel on those templates. We also note that the dust temperature of luminous IR galaxies (LIRGs, LIR ≥ 1011 L⊙) around z ∼ 1 is mildly colder by 10-15% than their local analogs and up to 20% for ULIRGs at z ∼ 1.6 (using a single modified blackbody-fit to the peak far-IR emission with an emissivity index of β = 1.5). Above z = 1.5, distant galaxies are found to exhibit a substantially larger mid- over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a hidden AGN. Two thirds of the AGNs identified in the field with a measured redshift exhibit the same behavior as purely star-forming galaxies. Hence a large fraction of AGNs harbor coeval star formation at very high SFR and in conditions similar to purely star-forming galaxies. © 2010 ESO.Herschel-ATLAS: Blazars in the science demonstration phase field
Astronomy and Astrophysics 518:3 (2010)
Abstract:
To investigate the poorly constrained sub-mm counts and spectral properties of blazars we searched for these in the Herschel-ATLAS (H-ATLAS) science demonstration phase (SDP) survey catalog. We cross-matched 500 μm sources brighter than 50 mJy with the FIRST radio catalogue. We found two blazars, both previously known. Our study is among the first blind blazar searches at sub-mm wavelengths, i.e., in the spectral regime where little is still known about the blazar SEDs, but where the synchrotron peak of the most luminous blazars is expected to occur. Our early results are consistent with educated extrapolations of lower frequency counts and question indications of substantial spectral curvature downwards and of spectral upturns at mm wavelengths. One of the two blazars is identified with a Fermi/LAT γ-ray source and a WMAP source. The physical parameters of the two blazars are briefly discussed. These observations demonstrate that the H-ATLAS survey will provide key information about the physics of blazars and their contribution to sub-mm counts. © 2010 ESO.Herschel-ATLAS: Blazars in the science demonstration phase field
Astronomy and Astrophysics 518:3 (2010)