The cuspy liner nucleus of the S0/A galaxy NGC 2681

Astrophysical Journal 551:1 PART 1 (2001) 197-205

Authors:

M Cappellari, F Bertola, D Burstein, LM Buson, L Greggio, A Renzini

Abstract:

The nucleus of the bulge-dominated, multiply barred S0/a galaxy NGC 2681 is studied in detail using the high-resolution Hubble Space Telescope Faint Object Camera (FOC), Near-Infrared Camera and Multiobject Spectrometer (NICMOS) imaging, and the Faint Object Spectrograph (FOS). The ionized gas central velocity dispersion is found to increase by a factor ≈2 when narrowing the aperture from R ≈ 1″.5 (ground) to R ≈ 0″.1 (FOS). Dynamical modeling of these velocity dispersions suggests that NGC 2681 does host a supermassive black hole (BH) for which one can estimate a firm mass upper limit MBH ≲ 6 × 107 M⊙. This upper limit is consistent with the relation between the central BH mass and velocity dispersion MBH - σ known for other galaxies. The emission-line ratios place the nucleus of NGC 2681 among LINERs. It is likely that the emission-line region comes from a rather mild, but steady, feeding of gas to the central BH in this galaxy. The inner stellar population lacks any measurable color gradient (to a radius of 0.6 kpc) from the infrared to the ultraviolet, consistently with FOC, FOS, and IUE data, all indicating that this system underwent a starburst ≈1 Gyr ago that encompassed its whole interior, down to its very center. The most likely source of such a widely distributed starburst is the dumping of tidally extruded gas from a galaxy neighbor. If so, then NGC 2681 can be considered as the older brother of M82, seen face-on as opposed to the edge-on view we have for M82.

The Large-Scale Structure and Environment of HoII

(2001)

Authors:

M Bureau, C Carignan

The SAURON project. I. The panoramic integral-field spectrograph

(2001)

Authors:

R Bacon, Y Copin, G Monnet, Bryan W Miller, JR Allington-Smith, M Bureau, C Marcella Carollo, Roger L Davies, Eric Emsellem, Harald Kuntschner, Reynier F Peletier, EK Verolme, P Tim de Zeeuw

The radio galaxy K-z relation to z ~ 4.5

ArXiv astro-ph/0103364 (2001)

Authors:

Matt J Jarvis, Steve Rawlings, Steve Eales, Katherine M Blundell, Chris J Willott

Abstract:

Using a new radio sample, 6C* designed to find radio galaxies at z > 4 along with the complete 3CRR and 6CE sample we extend the radio galaxy K-z relation to z~4.5. The 6C* K-z data significantly improve delineation of the K-z relation for radio galaxies at high redshift (z > 2). Accounting for non-stellar contamination, and for correlations between radio luminosity and estimates of stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity of radio galaxies increases significantly at z > 2. This indicates that we are not probing into the formation epoch until at least z > 3.

Evidence of a supermassive black hole in the galaxy NGC 1023 from the nuclear stellar dynamics

Astrophysical Journal 550:1 PART 1 (2001) 75-86

Authors:

GA Bower, RF Green, R Bender, K Gebhardt, TR Lauer, J Magorrian, DO Richstone, A Danks, T Gull, J Hutchings, C Joseph, ME Kaiser, D Weistrop, B Woodgate, C Nelson, EM Malumuth

Abstract:

We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V ≈ 70 km s-1 at a distance of O″. 1 = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where σ = 295 ± 30 km s-1). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence greater than 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 ± 1.4) x 107 M⊙ and mass-to-light ratio (M/LV) of 5.38 ± 0.08, and the goodness of fit (χ2) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which nonparametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 ± 0.4) x 107 M⊙ and M/LV of 5.56 ± 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line-of-sight velocity distribution has enhanced wings at velocities ≥ 600 km s-1 from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.