Collision-induced galaxy formation: semi-analytical model and multi-wavelength predictions

(2002)

Authors:

Christophe Balland, Julien EG Devriendt, Joe Silk

Galaxies with a central minimum in stellar luminosity density

Astronomical Journal 124:4 1762 (2002) 1975-1987

Authors:

TR Lauer, K Gebhardt, D Richstone, S Tremaine, R Bender, G Bower, A Dressler, SM Faber, AV Filippenko, R Green, CJ Grillmair, LC Ho, J Kormendy, J Magorrian, J Pinkney, S Laine, M Postman, RP Van Der Marel

Abstract:

We used Hubble Space Telescope WFPC2 images to identify six early-type galaxies with surface brightness profiles that decrease inward over a limited range of radii near their centers. The inferred luminosity density profiles of these galaxies have local minima interior to their core break radii. NGC 3706 harbors a high surface brightness ring of starlight with radius ≈20 pc. Its central structure may be related to that in the double-nucleus galaxies M31 and NGC 4486B. NGC 4406 and NGC 6876 have nearly flat cores that, on close inspection, are centrally depressed. Colors for both galaxies imply that this is not due to dust absorption. The surface brightness distributions of both galaxies are consistent with stellar tori that are more diffuse than the sharply defined system in NGC 3706. The remaining three galaxies are the brightest cluster galaxies in A260, A347, and A3574. Color information is not available for these objects, but they strongly resemble NGC 4406 and NGC 6876 in their cores. The thin ring in NGC 3706 may have formed dissipatively. The five other galaxies resemble the endpoints of some simulations of the merging of two gas-free stellar systems, each harboring a massive nuclear black hole. In one version of this scenario, diffuse stellar tori are produced when stars initially bound to one black hole are tidally stripped away by the second black hole. Alternatively, some inward-decreasing surface brightness profiles may reflect the ejection of stars from a core during the hardening of the binary black hole created during the merger.

Submillimetre observations of hyperluminous infrared galaxies

Monthly Notices of the Royal Astronomical Society 335:4 (2002) 1163-1175

Authors:

D Farrah, S Serjeant, A Efstathiou, M Rowan-Robinson, A Verma

Abstract:

We present submillimetre (sub-mm) photometry for 11 hyperluminous infrared galaxies (HLIRGs, LIR > 1013.0 h-265 L) and use radiative transfer models for starbursts and active galactic nuclei (AGN) to examine the nature of the IR emission. In all the sources both a starburst and AGN are required to explain the total IR emission. The mean starburst fraction is 35 per cent, with a range spanning 80 per cent starburst-dominated to 80 per cent AGN-dominated. In all cases the starburst dominates at rest-frame wavelengths longwards of 50 μm, with star formation rates > 500 M yr-1. The trend of increasing AGN fraction with increasing IR luminosity observed in IRAS galaxies is observed to peak in the HLIRG population, and not increase beyond the fraction seen in the brightest ultraluminous infrared galaxies (ULIRGs). The AGN and starburst luminosities correlate, suggesting that a common physical factor, plausibly the dust masses, govern the luminosities of starbursts and AGN in HLIRGs. Our results suggest that the HLIRG population is composed both of ULIRG-like galaxy mergers and of young galaxies going through their maximal star formation periods whilst harbouring an AGN. The detection of coeval AGN and starburst activity in our sources implies that starburst and AGN activity, and the peak starburst and AGN luminosities, can be coeval in active galaxies generally. When extrapolated to high z our sources have comparable observed frame sub-mm fluxes to sub-mm survey sources. At least some high-z sub-mm survey sources are therefore likely to be composed of similar galaxy populations to those found in the HLIRG population. It is also plausible from these results that high-z sub-mm sources harbour heavily obscured AGN. The differences in X-ray and sub-mm properties between HLIRGs at z ∼ 1 and sub-mm sources at ∼3 implies some level of evolution between the two epochs. Either the mean AGN obscuration level is greater at z ∼ 3 than at z ∼ 1, or the fraction of IR-luminous sources at z ∼ 3 that contain AGN is smaller than that at z ∼ 1.

Mid-Infrared line diagnostics of active galaxies*

Astronomy & Astrophysics EDP Sciences 393:3 (2002) 821-841

Authors:

E Sturm, D Lutz, A Verma, H Netzer, A Sternberg, AFM Moorwood, E Oliva, R Genzel

On the black hole mass-radio luminosity relation for flat-spectrum radio-loud quasars

\mnras 336 (2002) L38-L42-L38-L42

Authors:

MJ Jarvis, RJ McLure