From stellar nurseries to old stellar populations: a multiwavelength case of NGC 1055
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:3 (2024) 3103-3117
Abstract:
ABSTRACT Given the complex nature of galaxies’ interstellar medium (ISM), multiwavelength data are required to probe the interplay among gas, dust, and stellar populations. Spiral galaxies are ideal laboratories for such a goal as they are rich in gas and dust. Using carbon monoxide (CO) along with GALEX far-ultraviolet (FUV) and Spitzer near-infrared (NIR) data we probe the correlations amongst the properties of stellar populations, gas, and dust over the disc of the spiral galaxy NGC 1055 at multiple angular resolutions, that is, 2, 4, and 17 arcsec corresponding to a linear size of 144, 288, and 1.2 kpc, respectively. Our results indicate an asymmetry in the physical conditions along the galaxy’s disc, that is, the gas is slightly more extended and brighter, and molecular gas mass is higher on the disc’s eastern side than the western side. All physical properties (i.e. molecular gas mass, CO line ratios, stellar mass, and NIR emission) decrease from the centre going outwards in the disc with some exceptions (i.e. the extinction, FUV radiation, and the [3.6]−[4.5] colour). Our analysis indicates that the colour gets bluer (metallicity increases) halfway through the disc, then redder (metallicity decreases) going outwards further in the disc.MeerKAT discovery of a double radio relic and odd radio circle: connecting cluster and galaxy merger shocks
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:3 (2024) 3357-3372
WISDOM Project – XXI. Giant molecular clouds in the central region of the barred spiral galaxy NGC 613: a steep size – linewidth relation
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2024) stae1394-stae1394
Abstract:
<jats:title>Abstract</jats:title> <jats:p>NGC 613 is a nearby barred spiral galaxy with a nuclear ring. Exploiting high spatial resolution (≈20 pc) Atacama Large Millimeter/sub-millimeter Array 12CO(1-0) observations, we study the giant molecular clouds (GMCs) in the nuclear ring and its vicinity, identifying 158 spatially- and spectrally-resolved GMCs. The GMC sizes (Rc) are comparable to those of the clouds in the Milky Way (MW) disc, but their gas masses, observed linewidths (σobs, los) and gas mass surface densities are larger. The GMC size – linewidth relation ($\sigma _{\mathrm{obs,los}}\propto R_{\mathrm{c}}^{0.77}$) is steeper than that of the clouds of the MW disc and centre, and the GMCs are on average only marginally gravitationally bound (with a mean virial parameter 〈αobs, vir〉 ≈ 1.7). We discuss the possible origins of the steep size – linewidth relation and enhanced observed linewidths of the clouds and suggest that a combination of mechanisms such as stellar feedback, gas accretion and cloud-cloud collisions, as well as the gas inflows driven by the large-scale bar, may play a role.</jats:p>WISDOM Project – XXI. Giant molecular clouds in the central region of the barred spiral galaxy NGC 613: a steep size – linewidth relation
Monthly Notices of the Royal Astronomical Society Oxford University Press 531:4 (2024) 4045-4059
Abstract:
NGC 613 is a nearby barred spiral galaxy with a nuclear ring. Exploiting high spatial resolution (≈20 pc) Atacama Large Millimeter/sub-millimeter Array 12CO(1-0) observations, we study the giant molecular clouds (GMCs) in the nuclear ring and its vicinity, identifying 158 spatially- and spectrally-resolved GMCs. The GMC sizes (Rc) are comparable to those of the clouds in the Milky Way (MW) disc, but their gas masses, observed linewidths (σobs, los) and gas mass surface densities are larger. The GMC size – linewidth relation ($\sigma _{\mathrm{obs,los}}\propto R_{\mathrm{c}}^{0.77}$) is steeper than that of the clouds of the MW disc and centre, and the GMCs are on average only marginally gravitationally bound (with a mean virial parameter 〈αobs, vir〉 ≈ 1.7). We discuss the possible origins of the steep size – linewidth relation and enhanced observed linewidths of the clouds and suggest that a combination of mechanisms such as stellar feedback, gas accretion and cloud-cloud collisions, as well as the gas inflows driven by the large-scale bar, may play a role.WISDOM project XX. – Strong shear tearing molecular clouds apart in NGC 524
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:4 (2024) stae1395-stae1395