What Is the Nature of Little Red Dots and what Is Not, MIRI SMILES Edition

The Astrophysical Journal American Astronomical Society 968:1 (2024) 4

Authors:

Pablo G Pérez-González, Guillermo Barro, George H Rieke, Jianwei Lyu, Marcia Rieke, Stacey Alberts, Christina C Williams, Kevin Hainline, Fengwu Sun, Dávid Puskás, Marianna Annunziatella, William M Baker, Andrew J Bunker, Eiichi Egami, Zhiyuan Ji, Benjamin D Johnson, Brant Robertson, Bruno Rodríguez Del Pino, Wiphu Rujopakarn, Irene Shivaei, Sandro Tacchella, Christopher NA Willmer, Chris Willott

Abstract:

We study 31 little red dots (LRD) detected by JADES/NIRCam and covered by the SMILES/MIRI survey, of which ∼70% are detected in the two bluest MIRI bands and 40% in redder MIRI filters. The median/quartiles redshifts are z=6.95.97.7 (55% spectroscopic). The spectral slopes flatten in the rest-frame near-infrared, consistent with a 1.6 μm stellar bump but bluer than direct pure emission from active galactic nuclei (AGN) tori. The apparent dominance of stellar emission at these wavelengths for many LRDs expedites stellar mass estimation: the median/quartiles are logM⋆/M⊙=9.49.19.7 . The number density of LRDs is 10−4.0±0.1 Mpc−3, accounting for 14% ± 3% of the global population of galaxies with similar redshifts and masses. The rest-frame near-/mid-infrared (2–4 μm) spectral slope reveals significant amounts of warm dust (bolometric attenuation ∼3–4 mag). Our spectral energy distribution modeling implies the presence of <0.4 kpc diameter knots, heated by either dust-enshrouded OB stars or an AGN producing a similar radiation field, obscured by A(V) > 10 mag. We find a wide variety in the nature of LRDs. However, the best-fitting models for many of them correspond to extremely intense and compact starburst galaxies with mass-weighted ages 5–10 Myr, very efficient in producing dust, with their global energy output dominated by the direct (in the flat rest-frame ultraviolet and optical spectral range) and dust-recycled emission from OB stars with some contribution from an obscured AGN (in the infrared).

WISDOM project XX -- Strong shear tearing molecular clouds apart in NGC 524

(2024)

Authors:

Anan Lu, Daryl Haggard, Martin Bureau, Jindra Gensior, Sarah Jeffreson, Carmelle Robert, Thomas G Williams, Fu-Heng Liang, Woorak Choi, Timothy A Davis, Sara Babic, Hope Boyce, Benjamin Cheung, Laurent Drissen, Jacob S Elford, Lijie Liu, Thomas Martin, Carter Rhea, Laurie Rousseau-Nepton, Ilaria Ruffa

SYREN-HALOFIT: A fast, interpretable, high-precision formula for the ΛCDM nonlinear matter power spectrum

Astronomy & Astrophysics EDP Sciences 686 (2024) a150

Authors:

Deaglan J Bartlett, Benjamin D Wandelt, Matteo Zennaro, Pedro G Ferreira, Harry Desmond

Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Cross-correlation with the cosmic microwave background (Corrigendum)

Astronomy & Astrophysics EDP Sciences 686 (2024) ARTN C2

Authors:

Sj Nakoneczny, D Alonso, M Bilicki, Dj Schwarz, Cl Hale, A Pollo, C Heneka, P Tiwari, J Zheng, M Brüggen, Mj Jarvis, Tw Shimwell

The Highest-redshift Balmer Breaks as a Test of ΛCDM

The Astrophysical Journal American Astronomical Society 967:2 (2024) 172

Authors:

Charles L Steinhardt, Albert Sneppen, Thorbjørn Clausen, Harley Katz, Martin P Rey, Jonas Stahlschmidt

Abstract:

Recent studies have reported tension between the presence of luminous, high-redshift galaxies and the halo mass functions predicted by standard cosmology. Here, an improved test is proposed using the presence of high-redshift Balmer breaks to probe the formation of early 104–105 M ⊙ baryonic minihalos. Unlike previous tests, this does not depend upon the mass-to-light ratio and has only a slight dependence upon the metallicity, stellar initial mass function, and star formation history, which are all weakly constrained at high redshift. We show that the strongest Balmer breaks allowed at z = 9 using the simplest ΛCDM cosmological model would allow a D 4000 as high as 1.26 under idealized circumstances and D 4000 ≤ 1.14 including realistic feedback models. Since current photometric template fitting to JWST sources infers the existence of stronger Balmer breaks out to z ≳ 11, upcoming spectroscopic follow-up will either demonstrate those templates are invalid at high redshift or imply new physics beyond “vanilla” ΛCDM.