WISDOM Project – XIX. Figures of merit for supermassive black hole mass measurements using molecular gas and/or megamaser kinematics
Abstract:
The mass (MBH) of a supermassive black hole (SMBH) can be measured using spatially-resolved kinematics of the region where the SMBH dominates gravitationally. The most reliable measurements are those that resolve the smallest physical scales around the SMBHs. We consider here three metrics to compare the physical scales probed by kinematic tracers dominated by rotation: the radius of the innermost detected kinematic tracer Rmin normalised by respectively the SMBH’s Schwarzschild radius (RSchw ≡ 2GMBH/c2, where G is the gravitational constant and c the speed of light), sphere-of-influence (SOI) radius ($R_\mathrm{SOI}\equiv GM_\mathrm{BH}/\sigma _\mathrm{e}^2$, where σe is the stellar velocity dispersion within the galaxy’s effective radius) and equality radius (the radius Req at which the SMBH mass equals the enclosed stellar mass, MBH = M*(Req), where M*(R) is the stellar mass enclosed within the radius R). All metrics lead to analogous simple relations between Rmin and the highest circular velocity probed Vc. Adopting these metrics to compare the SMBH mass measurements using molecular gas kinematics to those using megamaser kinematics, we demonstrate that the best molecular gas measurements resolve material that is physically closer to the SMBHs in terms of RSchw but is slightly farther in terms of RSOI and Req. However, molecular gas observations of nearby galaxies using the most extended configurations of the Atacama Large Millimeter/sub-millimeter Array can resolve the SOI comparably well and thus enable SMBH mass measurements as precise as the best megamaser measurements.The impact of cosmic rays on the interstellar medium and galactic outflows of Milky Way analogues
Abstract:
During the last decade, cosmological simulations have managed to reproduce realistic and morphologically diverse galaxies, spanning the Hubble sequence. Central to this success was a phenomenological calibration of the few included feedback processes, while glossing over higher complexity baryonic physics. This approach diminishes the predictive power of such simulations, preventing to further our understanding of galaxy formation. To tackle this fundamental issue, we investigate the impact of cosmic rays (CRs) and magnetic fields on the interstellar medium and the launching of outflows in a cosmological zoom-in simulation of a Milky Way-like galaxy. We find that including CRs decreases the stellar mass of the galaxy by a factor of 10 at high redshift and ∼4 at cosmic noon, leading to a stellar mass to halo mass ratio in good agreement with abundance matching models. Such decrease is caused by two effects: (i) a reduction of cold, high-density, star-forming gas, and (ii) a larger fraction of supernova (SN) events exploding at lower densities, where they have a higher impact. SN-injected CRs produce enhanced, multiphase galactic outflows, which are accelerated by CR pressure gradients in the circumgalactic medium of the galaxy. While the mass budget of these outflows is dominated by the warm ionized gas, warm neutral and cold gas phases contribute significantly at high redshifts. Importantly, our work shows that future JWST observations of galaxies and their multiphase outflows across cosmic time have the ability to constrain the role of CRs in regulating star formation.