Metal and dust evolution in ALMA REBELS galaxies: insights for future JWST observations
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:2 (2024) 2407-2427
VINTERGATAN-GM: How do mergers affect the satellite populations of MW-like galaxies?
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:2 (2024) 2346-2357
Widespread AGN feedback in a forming brightest cluster galaxy at $z=4.1$ unveiled by JWST
ArXiv 2401.12199 (2024)
A small and vigorous black hole in the early Universe
Nature Nature Research 627:8002 (2024) 59-63
Abstract:
Several theories have been proposed to describe the formation of black hole seeds in the early Universe and to explain the emergence of very massive black holes observed in the first thousand million years after the Big Bang1–3. Models consider different seeding and accretion scenarios4–7, which require the detection and characterization of black holes in the first few hundred million years after the Big Bang to be validated. Here we present an extensive analysis of the JWST-NIRSpec spectrum of GN-z11, an exceptionally luminous galaxy at z = 10.6, revealing the detection of the [Neiv]λ2423 and CII*λ1335 transitions (typical of active galactic nuclei), as well as semi-forbidden nebular lines tracing gas densities higher than 109 cm−3, typical of the broad line region of active galactic nuclei. These spectral features indicate that GN-z11 hosts an accreting black hole. The spectrum also reveals a deep and blueshifted CIVλ1549 absorption trough, tracing an outflow with velocity 800−1,000 km s−1, probably driven by the active galactic nucleus. Assuming local virial relations, we derive a black hole mass of log(MBH/M⊙)=6.2±0.3, accreting at about five times the Eddington rate. These properties are consistent with both heavy seeds scenarios and scenarios considering intermediate and light seeds experiencing episodic super-Eddington phases. Our finding explains the high luminosity of GN-z11 and can also provide an explanation for its exceptionally high nitrogen abundance.The Great Escape: Understanding the Connection Between Ly$\alpha$ Emission and LyC Escape in Simulated JWST Analogues
(2024)