Comprehensive Radio Monitoring of the Black Hole X-Ray Binary Swift J1727.8−1613 during Its 2023–2024 Outburst
The Astrophysical Journal American Astronomical Society 988:1 (2025) 109
Abstract:
This work presents comprehensive multifrequency radio monitoring of the black hole low-mass X-ray binary (LMXB) Swift J1727.8−1613, which underwent its first recorded outburst after its discovery in 2023 August. Through a considerable community effort, we have coalesced the data from multiple, distinct observing programs; the light curves include ∼10 months and 197 epochs of monitoring from seven radio facilities with observing frequencies ranging from (approximately) 0.3–230 GHz. The primary purpose of this work is to provide the broader astronomical community with these light curves to assist with the interpretation of other observing campaigns, particularly nonradio observing frequencies. We discuss the phenomenological evolution of the source, which included (i) multiple radio flares consistent with the launching of discrete jet ejections, the brightest of which reached ∼1 Jy; (ii) temporally evolving radio spectral indices (α), reaching values steeper than expected for optically thin synchrotron emission (α < −1) and emission with significant radiative cooling (α < −1.5). We have published a digital copy of the data and intend for this work to set a precedent for the community to continue releasing comprehensive radio light curves of future LMXB outbursts.The Accretion-Ejection Connection in the Black Hole X-ray Binary MAXI J1820$+$070
(2025)
Monte Carlo radiation hydrodynamic simulations of line-driven disc winds: relaxing the isothermal approximation
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2393-2404
Abstract:
Disc winds play a crucial role in many accreting astrophysical systems across all scales. In accreting white dwarfs (AWDs) and active galactic nuclei (AGNs), radiation pressure on spectral lines is a promising wind-driving mechanism. However, the efficiency of line driving is extremely sensitive to the ionization state of the flow, making it difficult to construct a reliable physical picture of these winds. Recently, we presented the first radiation-hydrodynamics simulations for AWDs that incorporated detailed, multidimensional ionization calculations via fully frequency-dependent radiative transfer, using the sirocco code coupled to pluto. These simulations produced much weaker line-driven winds ( for our adopted parameters) than earlier studies using more approximate treatments of ionization and radiative transfer (which yielded ). One remaining limitation of our work was the assumption of an isothermal outflow. Here, we relax this by adopting an ideal gas equation of state and explicitly solving for the multidimensional temperature structure of the flow. In the AWD setting, accounting for the thermal state of the wind does not change the overall conclusions drawn from the isothermal approximation. Our new simulations confirm the line-driving efficiency problem: the predicted outflows are too highly ionized, meaning they neither create optimal driving conditions nor reproduce the observed ultraviolet wind signatures. Possible solutions include wind clumping on subgrid scales, a softer-than-expected spectral energy distribution or additional driving mechanisms. With the physics now built into our simulations, we are well equipped to also explore line-driven disc winds in AGN.The accretion–ejection connection in the black hole X-ray binary MAXI J1820+070
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:2 (2025) 1851-1865
Abstract:
The black hole X-ray binary MAXI J1820070 began its first recorded outburst in March 2018, and remained an active radio, X-ray, and optical source for over 4 yr. Due to the low distance to the source and its intrinsically high luminosity MAXI J1820070 was observed extensively over this time period, resulting in high-cadence and quasi-simultaneous observations across the electromagnetic spectrum. These data sets provide the opportunity to probe the connection between accretion and the launch of jets in greater detail than for the majority of black hole X-ray binaries. In this work, we present radio (Arcminute Microkelvin Imager Large Array, MeerKAT), X-ray (Swift), and optical (Las Cumbres Observatory) observations of MAXI J1820070 throughout its entire outburst, including its initial hard state, subsequent soft state, and further hard-state-only re-brightenings (covering March 2018 to August 2022). Due to the regularity and temporal density of our observational data we are able to create a Radio–X-ray–Optical activity plane where we find a high degree of correlation between the three wave bands during the hard states, and observe hysteresis as MAXI J1820070 enters and exits the soft state. Based on the morphology of the optical light curves we see evidence for optical jet contributions during the soft-to-hard state transition, as well as fading optical emission well before the hard to soft transition. We establish that the remarkably similar profiles of the re-brightening events are broadly consistent with modified disc instability models where irradiation from the inner accretion disc is included.Joint Radiative and Kinematic Modelling of X-ray Binary Ejecta: Energy Estimate and Reverse Shock Detection
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1085