Gone with the Wind: JWST-MIRI Unveils a Strong Outflow from the Quiescent Stellar-Mass Black Hole A0620-00

(2025)

Authors:

Zihao Zuo, Gabriele Cugno, Joseph Michail, Elena Gallo, David M Russell, Richard M Plotkin, Fan Zou, M Cristina Baglio, Piergiorgio Casella, Fraser J Cowie, Rob Fender, Poshak Gandhi, Sera Markoff, Federico Vincentelli, Fraser Lewis, Jon M Miller, James CA Miller-Jones, Alexandra Veledina

Relativistic ejecta from stellar mass black holes: insights from simulations and synthetic radio images

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:1 (2025) 1084-1106

Authors:

Katie Savard, James H Matthews, Rob Fender, Ian Heywood

Abstract:

We present numerical simulations of discrete relativistic ejecta from an X-ray binary (XRB) with initial conditions directly informed by observations. XRBs have been observed to launch powerful discrete plasma ejecta during state transitions, which can propagate up to parsec distances. Understanding these ejection events unveils new understanding of jet-launching, jet power, and jet–interstellar medium (ISM) interaction among other implications. Multifrequency quasi-simultaneous radio observations of ejecta from the black hole XRB MAXI J1820+070 produced both size and calorimetry constraints, which we use as initial conditions of a relativistic hydrodynamic simulation. We qualitatively reproduce the observed deceleration of the ejecta in a homogeneous ISM. Our simulations demonstrate that the ejecta must be denser than the ISM, the ISM be significantly low density, and the launch be extremely powerful, in order to propagate to the observed distances. The blob propagates and clears out a high-pressure low-density cavity in its wake, providing an explanation for this pre-existing low-density environment, as well as ‘bubble-like’ environments in the vicinity of XRBs inferred from other studies. As the blob decelerates, we observe the onset of instabilities and a long-lived reverse shock – these mechanisms convert kinetic to internal energy in the blob, responsible for in situ particle acceleration. We transform the outputs of our simulation into pseudo-radio images, incorporating the coverage of the MeerKAT and e-MERLIN telescopes from the original observations with real-sky background. Through this, we maximize the interpretability of the results and provide direct comparison to current data, as well as provide prediction capabilities.

MeerKAT discovery of a hyperactive repeating fast radio burst source

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:2 (2025) 1685-1700

Authors:

J Tian, I Pastor-Marazuela, KM Rajwade, BW Stappers, K Shaji, KY Hanmer, M Caleb, MC Bezuidenhout, F Jankowski, R Breton, ED Barr, M Kramer, PJ Groot, S Bloemen, P Vreeswijk, D Pieterse, PA Woudt, RP Fender, RAD Wijnands, DAH Buckley

Abstract:

We present the discovery and localization of a repeating fast radio burst (FRB) source from the MeerTRAP project, a commensal fast radio transient search programme using the MeerKAT telescope. FRB 20240619D was first discovered on 2024 June 19 with three bursts being detected within 2 min in the MeerKAT L band (856–1712 MHz). We conducted follow-up observations of FRB 20240619D with MeerKAT using the Ultra-High Frequency (UHF; MHz), L-band and S-band (1968–2843 MHz) receivers one week after its discovery, and recorded a total of 249 bursts. The MeerKAT-detected bursts exhibit band-limited emission with an average fractional bandwidth of 0.31, 0.34, and 0.48 in the UHF, L-band, and S-band, respectively. We find our observations are complete down to a fluence limit of Jy ms, above which the cumulative burst rate follows a power law with and in the UHF and L band, respectively. The near-simultaneous L-band, UHF, and S-band observations reveal a frequency dependent burst rate with more bursts being detected in the L band than in the UHF and S band, suggesting a spectral turnover in the burst energy distribution of FRB 20240619D. Our polarimetric analysis demonstrates that most of the bursts have linear polarization fractions and circular polarization fractions. We find no optical counterpart of FRB 20240619D in the MeerLICHT optical observations simultaneous to the radio observations and set a fluence upper limit in MeerLICHT’s q band of 0.76 Jy ms and an optical-to-radio fluence ratio limit of 0.034 for a 15 s exposure.

MeerKAT discovery of a hyperactive repeating fast radio burst source

(2025)

Authors:

J Tian, I Pastor-Marazuela, KM Rajwade, BW Stappers, K Shaji, KY Hanmer, M Caleb, MC Bezuidenhout, F Jankowski, R Breton, ED Barr, M Kramer, PJ Groot, S Bloemen, P Vreeswijk, D Pieterse, PA Woudt, RP Fender, RAD Wijnands, DAH Buckley

The Ejection of Transient Jets in Swift J1727.8−1613 Revealed by Time-dependent Visibility Modeling

The Astrophysical Journal Letters American Astronomical Society 984:2 (2025) L53

Authors:

Callan M Wood, James CA Miller-Jones, Arash Bahramian, Steven J Tingay, He-Xin Liu, Diego Altamirano, Rob Fender, Elmar Körding, Dipankar Maitra, Sera Markoff, David M Russell, Thomas D Russell, Craig L Sarazin, Gregory R Sivakoff, Roberto Soria, Alexandra J Tetarenko, Valeriu Tudose

Abstract:

High angular resolution radio observations of relativistic jets are necessary to understand the causal connection between accretion and jet ejection in low-mass X-ray binaries. Images from these observations can be difficult to reconstruct due to the rapid intra-observational motion and variability of transient jets. We have developed a time-dependent visibility model fitting and self-calibration procedure and applied it to a single 4 hr VLBA observation of the low-mass X-ray binary Swift J1727.8−1613 during the bright flaring period of its 2023 outburst. This allowed us to detect and model a slightly resolved self-absorbed compact core, as well as three downstream transient jet knots. We were able to precisely measure the proper motion and flux density variability of these three jet knots, as well as (for the first time) their intra-observational expansion. Using simultaneous multifrequency data, we were also able to measure the spectral index of the furthest downstream jet knot, and the core, as well as the frequency-dependent core shift between 2.3 and 8.3 GHz. Using these measurements, we inferred the ejection dates of the three jet knots, including one to within ±40 minutes, which is one of the most precise ever measured. The ejection of the transient jet knots coincided with a bright X-ray flare and a drastic change in the X-ray spectral and timing properties as seen by HXMT, which is the clearest association ever seen between the launching of transient relativistic jets in an X-ray binary and a sudden change in the X-ray properties of the accretion inflow.