An early peak in the radio light curve of short-duration Gamma-Ray Burst 200826A

(2021)

Authors:

Lauren Rhodes, Rob Fender, David RA Williams, Kunal Mooley

A self-lensing binary massive black hole interpretation of quasi-periodic eruptions

(2021)

Authors:

Adam Ingram, Sara Motta, Suzanne Aigrain, Aris Karastergiou

Observations of a radio-bright, X-ray obscured GRS 1915+105

Monthly Notices of the Royal Astronomical Society Oxford University Press 503:1 (2021) 152-161

Authors:

Sara Motta, Jje Kajava, M Giustini, Dra Williams, M Del Santo, R Fender, Da Green, I Heywood, L Rhodes, A Segreto, G Sivakoff, Pa Woudt

Abstract:

The Galactic black hole transient GRS 1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS 1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multiwavelength flares. Here, we report the radio and X-ray properties of GRS 1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (∼3 mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS 1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterized by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg.

Placing LOFAR-detected quasars in C iv emission space: implications for winds, jets and star formation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 502:3 (2021) 4154-4169

Authors:

Amy L Rankine, James H Matthews, Paul C Hewett, Manda Banerji, Leah K Morabito, Gordon T Richards

Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS IOP Publishing 2021:2 (2021) 48

Authors:

H Abdalla, H Abe, F Acero, A Acharyya, R Adam, I Agudo, A Aguirre-Santaella, R Alfaro, J Alfaro, C Alispach, R Aloisio, R Alves Batista, L Amati, E Amato, G Ambrosi, Eo Anguner, A Araudo, T Armstrong, F Arqueros, L Arrabito, K Asano, Y Ascasibar, M Ashley, M Backes, C Balazs, M Balbo, B Balmaverde, A Baquero Larriva, V Barbosa Martins, M Barkov, L Baroncelli, U Barres de Almeida, Ja Barrio, P-I Batista, J Becerra Gonzalez, Y Becherini, G Beck, J Becker Tjus, R Belmont, W Benbow, E Bernardini, A Berti, M Berton, B Bertucci, V Beshley, B Bi, B Biasuzzi, A Biland, E Bissaldi, J Biteau

Abstract:

The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology.