Mean DNA bend angle and distribution of DNA bend angles in the CAP-DNA complex in solution.
J Mol Biol 312:3 (2001) 453-468
Abstract:
In order to define the mean DNA bend angle and distribution of DNA bend angles in the catabolite activator protein (CAP)-DNA complex in solution under standard transcription initiation conditions, we have performed nanosecond time-resolved fluorescence measurements quantifying energy transfer between a probe incorporated at a specific site in CAP, and a complementary probe incorporated at each of five specific sites in DNA. The results indicate that the mean DNA bend angle is 77(+/-3) degrees - consistent with the mean DNA bend angle observed in crystallographic structures (80(+/-12) degrees ). Lifetime-distribution analysis indicates that the distribution of DNA bend angles is relatively narrow, with <10 % of DNA bend angles exceeding 100 degrees. Millisecond time-resolved luminescence measurements using lanthanide-chelate probes provide independent evidence that the upper limit of the distribution of DNA bend angles is approximately 100 degrees. The methods used here will permit mutational analysis of CAP-induced DNA bending and the role of CAP-induced DNA bending in transcriptional activation.Translocation of sigma(70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA.
Cell 106:4 (2001) 453-463
Abstract:
Using fluorescence resonance energy transfer, we show that, in the majority of transcription complexes, sigma(70) is not released from RNA polymerase upon transition from initiation to elongation, but, instead, remains associated with RNA polymerase and translocates with RNA polymerase. The results argue against the presumption that there are necessary subunit-composition differences, and corresponding necessary mechanistic differences, in initiation and elongation. The methods of this report should be generalizable to monitor movement of any molecule relative to any nucleic acid.Structural transitions in transcription initiation: Kinetic and single molecule kinetic analyses
BIOPHYSICAL JOURNAL 80:1 (2001) 3A-3A
New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB.
Genes Dev 12:1 (1998) 34-44
Abstract:
A sequence element located immediately upstream of the TATA element, and having the consensus sequence 5'-G/C-G/C-G/A-C-G-C-C-3', affects the ability of transcription factor IIB to enter transcription complexes and support transcription initiation. The sequence element is recognized directly by the transcription factor IIB. Recognition involves alpha-helices 4' and 5' of IIB, which comprise a helix-turn-helix DNA-binding motif. These observations establish that transcription initiation involves a fourth core promoter element, the IIB recognition element (BRE), in addition to the TATA element, the initiator element, and the downstream promoter element, and involves a second sequence-specific general transcription factor, IIB, in addition to transcription factor IID.Mechanisms of viral activators.
Cold Spring Harb Symp Quant Biol 63 (1998) 243-252