Potential Vorticity of Saturn's Polar Regions: Seasonality and Instabilities

Journal of Geophysical Research: Planets American Geophysical Union (AGU) (2019)

Authors:

Arrate Antuñano, Teresa del Río-Gaztelurrutia, Agustín Sánchez-Lavega, Peter L Read, Leigh N Fletcher

Direct imaging of molten protoplanets in nearby young stellar associations

Astronomy and Astrophysics EDP Sciences 621 (2019) A125

Authors:

I Bonati, Tim Lichtenberg, DJ Bower, ML Timpe, SP Quanz

Abstract:

© ESO 2019. During their formation and early evolution, rocky planets undergo multiple global melting events due to accretionary collisions with other protoplanets. The detection and characterization of their post-collision afterglows (magma oceans) can yield important clues about the origin and evolution of the solar and extrasolar planet population. Here, we quantitatively assess the observational prospects to detect the radiative signature of forming planets covered by such collision-induced magma oceans in nearby young stellar associations with future direct imaging facilities. We have compared performance estimates for near- and mid-infrared instruments to be installed at ESO's Extremely Large Telescope (ELT), and a potential space-based mission called Large Interferometer for Exoplanets (LIFE). We modelled the frequency and timing of energetic collisions using N-body models of planet formation for different stellar types, and determine the cooling of the resulting magma oceans with an insulating atmosphere. We find that the probability of detecting at least one magma ocean planet depends on the observing duration and the distribution of atmospheric properties among rocky protoplanets. However, the prospects for detection significantly increase for young and close stellar targets, which show the highest frequencies of giant impacts. For intensive reconnaissance with a K band (2.2 μm) ELT filter or a 5.6 μm LIFE filter, the β Pictoris, Columba, TW Hydrae, and Tucana-Horologium associations represent promising candidates for detecting a molten protoplanet. Our results motivate the exploration of magma ocean planets using the ELT and underline the importance of space-based direct imaging facilities to investigate and characterize planet formation and evolution in the solar vicinity. Direct imaging of magma oceans will advance our understanding of the early interior, surface and atmospheric properties of terrestrial worlds.

First-order mean motion resonances in two-planet systems: general analysis and observed systems

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

CEJ TERQUEM, John Papaloizou

Magma ascent in planetesimals: control by grain size

Earth and Planetary Science Letters Elsevier 507 (2018) 154-165

Authors:

T Lichtenberg, T Keller, Richard Katz, GJ Golabek, TV Gerya

Abstract:

Rocky planetesimals in the early solar system melted internally and evolved chemically due to radiogenic heating from 26Al. Here we quantify the parametric controls on magma genesis and transport using a coupled petrological and fluid mechanical model of reactive two-phase flow. We find the mean grain size of silicate minerals to be a key control on magma ascent. For grain sizes ≳1 mm, melt segregation produces distinct radial structure and chemical stratification. This stratification is most pronounced for bodies formed at around 1 Myr after formation of Ca, Al-rich inclusions. These findings suggest a link between the time and orbital location of planetesimal formation and their subsequent structural and chemical evolution. According to our models, the evolution of partially molten planetesimal interiors falls into two categories. In the magma ocean scenario, the whole interior of a planetesimal experiences nearly complete melting, which would result in turbulent convection and core–mantle differentiation by the rainfall mechanism. In the magma sill scenario, segregating melts gradually deplete the deep interior of the radiogenic heat source. In this case, magma may form melt-rich layers beneath a cool and stable lid, while core formation would proceed by percolation. Our findings suggest that grain sizes prevalent during the internal heating stage governed magma ascent in planetesimals. Regardless of whether evolution progresses toward a magma ocean or magma sill structure, our models predict that temperature inversions due to rapid 26Al redistribution are limited to bodies formed earlier than ≈1 Myr after CAIs. We find that if grain size was ≲1 mm during peak internal melting, only elevated solid–melt density contrasts (such as found for the reducing conditions in enstatite chondrite compositions) would allow substantial melt segregation to occur.

Simulating Jupiter’s weather layer. Part I: Jet spin-up in a dry atmosphere

Icarus Elsevier 326 (2018) 225-252

Authors:

Roland Young, Peter Read, Yixiong Wang

Abstract:

We investigate the dynamics of Jupiter's upper troposphere and lower stratosphere using a General Circulation Model that includes two-stream radiation and optional heating from below. Based on the MITgcm dynamical core, this is a new generation of the Oxford Jupiter model [Zuchowski, L.C. et al., 2009. Plan. Space Sci., 57, 1525--1537, doi:10.1016/j.pss.2009.05.008]. We simulate Jupiter's atmosphere at up to 0.7 degree horizontal resolution with 33 vertical levels down to a pressure of 18 bar, in configurations with and without a 5.7 W/m2 interior heat flux. Simulations ran for 130000-150000 days to allow the deep atmosphere to come into radiative equilibrium. Baroclinic instability generates alternating, eddy-driven, midlatitude jets in both cases. With interior heating the zonal jets migrate towards the equator and become barotropically unstable. This generates Rossby waves that radiate away from the equator, depositing westerly momentum there via eddy angular momentum flux convergence and spinning up a super-rotating 20 m/s equatorial jet throughout the troposphere. There are 30-35 zonal jets with latitudinal separation comparable with the real planet, and there is strong eddy activity throughout. Without interior heating the jets do not migrate and a divergent eddy angular momentum flux at the equator spins up a broad, 50 m/s sub-rotating equatorial jet with weak eddy activity at low latitudes.