The World of Jets

Chapter in Zonal Jets, Cambridge University Press (CUP) (2019) 3-6

Authors:

Boris Galperin, Peter L Read

Zonal Jet Flows in the Laboratory: An Introduction

Chapter in Zonal Jets, Cambridge University Press (CUP) (2019) 119-134

Zonal jets: Phenomenology, genesis, and physics

, 2019

Authors:

B Galperin, PL Read

Abstract:

In recent decades, great progress has been made in our understanding of zonal jets across many subjects - atmospheric science, oceanography, planetary science, geophysical fluid dynamics, plasma physics, magnetohydrodynamics, turbulence theory - but communication between researchers from different fields has been weak or non-existent. Even the terminology in different fields may be so disparate that researchers working on similar problems do not understand each other. This comprehensive, multidisciplinary volume will break cross-disciplinary barriers and aid the advancement of the subject. It presents a state-of-the-art summary of all relevant branches of the physics of zonal jets, from the leading experts. The phenomena and concepts are introduced at a level accessible to beginning graduate students and researchers from different fields. The book also includes a very extensive bibliography.

Potential Vorticity of Saturn's Polar Regions: Seasonality and Instabilities

Journal of Geophysical Research: Planets American Geophysical Union (AGU) (2019)

Authors:

Arrate Antuñano, Teresa del Río-Gaztelurrutia, Agustín Sánchez-Lavega, Peter L Read, Leigh N Fletcher

Direct imaging of molten protoplanets in nearby young stellar associations

Astronomy and Astrophysics EDP Sciences 621 (2019) A125

Authors:

I Bonati, Tim Lichtenberg, DJ Bower, ML Timpe, SP Quanz

Abstract:

© ESO 2019. During their formation and early evolution, rocky planets undergo multiple global melting events due to accretionary collisions with other protoplanets. The detection and characterization of their post-collision afterglows (magma oceans) can yield important clues about the origin and evolution of the solar and extrasolar planet population. Here, we quantitatively assess the observational prospects to detect the radiative signature of forming planets covered by such collision-induced magma oceans in nearby young stellar associations with future direct imaging facilities. We have compared performance estimates for near- and mid-infrared instruments to be installed at ESO's Extremely Large Telescope (ELT), and a potential space-based mission called Large Interferometer for Exoplanets (LIFE). We modelled the frequency and timing of energetic collisions using N-body models of planet formation for different stellar types, and determine the cooling of the resulting magma oceans with an insulating atmosphere. We find that the probability of detecting at least one magma ocean planet depends on the observing duration and the distribution of atmospheric properties among rocky protoplanets. However, the prospects for detection significantly increase for young and close stellar targets, which show the highest frequencies of giant impacts. For intensive reconnaissance with a K band (2.2 μm) ELT filter or a 5.6 μm LIFE filter, the β Pictoris, Columba, TW Hydrae, and Tucana-Horologium associations represent promising candidates for detecting a molten protoplanet. Our results motivate the exploration of magma ocean planets using the ELT and underline the importance of space-based direct imaging facilities to investigate and characterize planet formation and evolution in the solar vicinity. Direct imaging of magma oceans will advance our understanding of the early interior, surface and atmospheric properties of terrestrial worlds.