Tidally induced stellar oscillations: converting modelled oscillations excited by hot Jupiters into observables

(2020)

Authors:

Andrew Bunting, Caroline Terquem

Continuous structural parameterization: a proposed method for representing different model parameterizations within one structure demonstrated for atmospheric convection

Journal of Advances in Modeling Earth Systems American Geophysical Union 12:8 (2020) e2020MS002085

Authors:

Fh Lambert, Pg Challenor, Neil Lewis, Dj McNeall, N Owen, Ia Boutle, Hm Christensen, Rj Keane, Nj Mayne, A Stirling, Mj Webb

Abstract:

Continuous structural parameterization (CSP) is a proposed method for approximating different numerical model parameterizations of the same process as functions of the same grid‐scale variables. This allows systematic comparison of parameterizations with each other and observations or resolved simulations of the same process. Using the example of two convection schemes running in the Met Office Unified Model (UM), we show that a CSP is able to capture concisely the broad behavior of the two schemes, and differences between the parameterizations and resolved convection simulated by a high resolution simulation. When the original convection schemes are replaced with their CSP emulators within the UM, basic features of the original model climate and some features of climate change are reproduced, demonstrating that CSP can capture much of the important behavior of the schemes. Our results open the possibility that future work will estimate uncertainty in model projections of climate change from estimates of uncertainty in simulation of the relevant physical processes.

The turbulent dynamics of Jupiter’s and Saturn’s weather layers: order out of chaos?

Geoscience Letters Springer Nature 7:1 (2020) 10

Authors:

Peter L Read, Roland MB Young, Daniel Kennedy

Abstract:

The weather layers of the gas giant planets, Jupiter and Saturn, comprise the shallow atmospheric layers that are influenced energetically by a combination of incoming solar radiation and localised latent heating of condensates, as well as by upwelling heat from their planetary interiors. They are also the most accessible regions of those planets to direct observations. Recent analyses in Oxford of cloud-tracked winds on Jupiter have demonstrated that kinetic energy is injected into the weather layer at scales comparable to the Rossby radius of deformation and cascades both upscale, mostly into the extra-tropical zonal jets, and downscale to the smallest resolvable scales in Cassini images. The large-scale flow on both Jupiter and Saturn appears to equilibrate towards a state which is close to marginal instability according to Arnol’d’s 2nd stability theorem. This scenario is largely reproduced in a hierarchy of numerical models of giant planet weather layers, including relatively realistic models which seek to predict thermal and dynamical structures using a full set of parameterisations of radiative transfer, interior heat sources and even moist convection. Such models include (amongst others) the Jason GCM, developed in Oxford, which also represents the formation of (energetically passive) clouds of NH3, NH4SH and H2O condensates and the transport of condensable tracers. Recent results show some promise in comparison with observations from the Cassini and Juno missions, but some observed features (such as Jupiter’s Great Red Spot and other compact ovals) are not yet captured spontaneously by most weather layer models. We review recent work in this vein and discuss a number of open questions for future study.

Baroclinic and barotropic instabilities in planetary atmospheres: energetics, equilibration and adjustment

NONLINEAR PROCESSES IN GEOPHYSICS 27:1 (2020) 147-173

Authors:

Peter Read, Daniel Kennedy, Neil Lewis, Helene Scolan, Fachreddin Tabataba-Vakili, Yixiong Wang, Susie Wright, Roland Young

Abstract:

© 2020 BMJ Publishing Group. All rights reserved. <p>Baroclinic and barotropic instabilities are well known as the mechanisms responsible for the production of the dominant energy-containing eddies in the atmospheres of Earth and several other planets, as well as Earth's oceans. Here we consider insights provided by both linear and nonlinear instability theories into the conditions under which such instabilities may occur, with reference to forced and dissipative flows obtainable in the laboratory, in simplified numerical atmospheric circulation models and in the planets of our solar system. The equilibration of such instabilities is also of great importance in understanding the structure and energetics of the observable circulation of atmospheres and oceans. Various ideas have been proposed concerning the ways in which baroclinic and barotropic instabilities grow to a large amplitude and saturate whilst also modifying their background flow and environment. This remains an area that continues to challenge theoreticians and observers, though some progress has been made. The notion that such instabilities may act under some conditions to adjust the background flow towards a critical state is explored here in the context of both laboratory systems and planetary atmospheres. Evidence for such adjustment processes is found relating to baroclinic instabilities under a range of conditions where the efficiency of eddy and zonal-mean heat transport may mutually compensate in maintaining a nearly invariant thermal structure in the zonal mean. In other systems, barotropic instabilities may efficiently mix potential vorticity to result in a flow configuration that is found to approach a marginally unstable state with respect to Arnol'd's second stability theorem. We discuss the implications of these findings and identify some outstanding open questions.</p>.

The dependence of global and local metrics of super-rotation on planetary rotation rate

Copernicus Publications (2020)

Authors:

Neil Lewis, Greg Colyer, Peter Read

Abstract:

Super-rotation is a phenomenon in atmospheric dynamics where the axial angular momentum of an atmosphere in some way exceeds that of the underlying planet. In this presentation, we will discuss the dependency of both globally-integrated, and local metrics of super-rotation on planetary rotation rate, revealed through analysis of idealised General Circulation Model experiments. The model used here is based on the Held-Suarez benchmark for a dry, 'Earth-like' atmosphere, and results from both axisymmetric and three-dimensional experiments will be presented. Previous work has shown that the three-dimensional configuration used here will transition to a state of equatorial super-rotation if the rotation rate is reduced sufficiently from the Earth's. This motivates the question: How does super-rotation strength depend on rotation rate?

We will use the term 'global super-rotation' to refer to an atmosphere with excess of globally-integrated axial angular momentum relative to that achieved by solid body co-rotation with the underlying planet, and 'local super-rotation' to refer to the existence of some region within the atmosphere where axial angular momentum exceeds that of the underlying planet at the equator. In an inviscid, axisymmetric atmosphere, the axial component of specific angular momentum is materially conserved. Consequently, in such a system local super-rotation is forbidden, although global super-rotation may still be achieved if a meridional circulation is able to transport fluid equilibrated with the equatorial surface poleward. If the restriction of axisymmetry is lifted, then local super-rotation may exist if non-axisymmetric disturbances that act to transport angular momentum up-gradient are present. The atmospheres of Venus, the Earth, Mars, and Titan may be considered to be globally super-rotating, however only Venus and Titan exhibit permanent local super-rotation at the equator.

The results from axisymmetric experiments reveal that at high rotation rate (e.g., greater than 1/4 of the Earth's), the degree of global super-rotation scales inversely with the square of the rotation rate. In the low rotation rate limit, the degree of global super-rotation saturates, and becomes independent of rotation rate. We will show that the high, and low rotation rate dependencies can be predicted by a single analytic scaling for global super-rotation. Our three-dimensional experiments exhibit the same scaling behaviour for global super-rotation as observed in the axisymmetric experiments. The degree of global super-rotation achieved by the three-dimensional experiments is less than that of the axisymmetric experiments at high rotation rates, and greater at lower rotation rates, but in both limits the deviation from the axisymmetric 'base circulation' is small. In the low-rotation rate limit, local super-rotation is accelerated at the equator, which is consistent with the three-dimensional experiments obtaining a higher degree of global super-rotation than their axisymmetric counterparts. Estimates for global super-rotation strength on the Earth and Mars agree closely with the results of our three-dimensional numerical experiments, but Venus and Titan achieve substantially stronger global, and local super-rotation than found here. It appears that low rotation rate alone cannot induce substantial excess global super-rotation, relative to the axisymmetric base circulation we identify.