Wintertime Southern Hemisphere jet streams shaped by interaction of transient eddies with Antarctic orography
Journal of Climate Wiley 33:24 (2020) 10505-10522
Abstract:
The wintertime Southern Hemisphere extratropical circulation exhibits considerable zonal asymmetries. We investigate the roles of various surface boundary conditions in shaping the mean state using a semi-realistic, atmosphere-only climate model. We find, in agreement with previous literature, that tropical sea surface temperature (SST) patterns are an important contributor to the mean state, while midlatitude SSTs and sea ice extent play a smaller role. Our main finding is that Antarctic orography has a first-order effect on the structure of the midlatitude circulation. In the absence of Antarctic orography, equatorward eddy momentum fluxes associated with the orography are removed and hence convergence of eddy momentum in midlatitudes is reduced. This weakens the Indian Ocean jet, making Rossby wave propagation downstream to the South Pacific less favorable. Consequently, the flow stagnates over the mid- to high-latitude South Pacific and the characteristic split jet pattern is destroyed. Removing Antarctic orography also results in a substantial warming over East Antarctica partly because transient eddies are able to penetrate farther poleward, enhancing poleward heat transport. However, experiments in which a high-latitude cooling is applied indicate that these temperature changes are not the primary driver of circulation changes in the midlatitudes. Instead, we invoke a simple barotropic mechanism in which the orographic slope creates an effective potential vorticity gradient that alters the eddy momentum flux.Tidally induced stellar oscillations: converting modelled oscillations excited by hot Jupiters into observables
(2020)
Continuous structural parameterization: a proposed method for representing different model parameterizations within one structure demonstrated for atmospheric convection
Journal of Advances in Modeling Earth Systems American Geophysical Union 12:8 (2020) e2020MS002085
Abstract:
Continuous structural parameterization (CSP) is a proposed method for approximating different numerical model parameterizations of the same process as functions of the same grid‐scale variables. This allows systematic comparison of parameterizations with each other and observations or resolved simulations of the same process. Using the example of two convection schemes running in the Met Office Unified Model (UM), we show that a CSP is able to capture concisely the broad behavior of the two schemes, and differences between the parameterizations and resolved convection simulated by a high resolution simulation. When the original convection schemes are replaced with their CSP emulators within the UM, basic features of the original model climate and some features of climate change are reproduced, demonstrating that CSP can capture much of the important behavior of the schemes. Our results open the possibility that future work will estimate uncertainty in model projections of climate change from estimates of uncertainty in simulation of the relevant physical processes.The turbulent dynamics of Jupiter’s and Saturn’s weather layers: order out of chaos?
Geoscience Letters Springer Nature 7:1 (2020) 10
Abstract:
The weather layers of the gas giant planets, Jupiter and Saturn, comprise the shallow atmospheric layers that are influenced energetically by a combination of incoming solar radiation and localised latent heating of condensates, as well as by upwelling heat from their planetary interiors. They are also the most accessible regions of those planets to direct observations. Recent analyses in Oxford of cloud-tracked winds on Jupiter have demonstrated that kinetic energy is injected into the weather layer at scales comparable to the Rossby radius of deformation and cascades both upscale, mostly into the extra-tropical zonal jets, and downscale to the smallest resolvable scales in Cassini images. The large-scale flow on both Jupiter and Saturn appears to equilibrate towards a state which is close to marginal instability according to Arnol’d’s 2nd stability theorem. This scenario is largely reproduced in a hierarchy of numerical models of giant planet weather layers, including relatively realistic models which seek to predict thermal and dynamical structures using a full set of parameterisations of radiative transfer, interior heat sources and even moist convection. Such models include (amongst others) the Jason GCM, developed in Oxford, which also represents the formation of (energetically passive) clouds of NH3, NH4SH and H2O condensates and the transport of condensable tracers. Recent results show some promise in comparison with observations from the Cassini and Juno missions, but some observed features (such as Jupiter’s Great Red Spot and other compact ovals) are not yet captured spontaneously by most weather layer models. We review recent work in this vein and discuss a number of open questions for future study.Baroclinic and barotropic instabilities in planetary atmospheres: energetics, equilibration and adjustment
NONLINEAR PROCESSES IN GEOPHYSICS 27:1 (2020) 147-173