Zonal winds at high latitudes on Venus: An improved application of cyclostrophic balance to Venus Express observations

Icarus Elsevier 217:2 (2012) 629-639

Authors:

João M Mendonça, Peter L Read, Colin F Wilson, Stephen R Lewis

Data assimilation in the laboratory using a rotating annulus experiment

Quarterly Journal of the Royal Meteorological Society (2012)

Authors:

RMB Young, PL Read

Abstract:

The thermally driven rotating annulus is a laboratory experiment important for the study of the dynamics of planetary atmospheres under controllable and reproducible conditions. We use the analysis correction method to assimilate laboratory data into an annulus model. We analyze the 2S and 3AV regular flow regimes between rotation rates of 0.75 and 0.875 rad s and the 3SV chaotic flow regime between rotation rates of 2.2 and 3.1 rad s. Our assimilated observations are irregularly distributed, which is more meteorologically realistic than gridded observations as used in recent applications of data assimilation to laboratory measurements. We demonstrate that data assimilation can be used successfully and accurately in this context. We examine a number of specific assimilation scenarios: a wave-number transition between two regimes, information propagation from data-rich to data-poor regions, the response of the assimilation to a strong disturbance to the flow, and a vortex-shedding instability phenomenon at high rotation rate. At the highest rotation rates we calculated the barotropic E-vectors using unobserved variables such as temperature and the vertical structure of the velocity field that are only available via the assimilation. These showed that the mean flow is weakened by the action of eddies, going some way towards explaining why vortices are shed at the very highest rotation rates but not at lower rotation. Rossby-wave stability theory suggests that the underlying instability leading to vortex shedding may be baroclinic in character. © 2012 Royal Meteorological Society.

Phase synchronization between stratospheric and tropospheric quasi-biennial and semi-annual oscillations

Quarterly Journal of the Royal Meteorological Society (2012)

Authors:

PL Read, AA Castrejón-Pita

Ion heat transport studies in JET

Plasma Physics and Controlled Fusion 53:12 (2011)

Authors:

P Mantica, C Angioni, B Baiocchi, M Baruzzo, MNA Beurskens, JPS Bizarro, RV Budny, P Buratti, A Casati, C Challis, J Citrin, G Colyer, F Crisanti, ACA Figueiredo, L Frassinetti, C Giroud, N Hawkes, J Hobirk, E Joffrin, T Johnson, E Lerche, P Migliano, V Naulin, AG Peeters, G Rewoldt, F Ryter, A Salmi, R Sartori, C Sozzi, G Staebler, D Strintzi, T Tala, M Tsalas, D Van Eester, T Versloot, PC DeVries, J Weiland

Abstract:

Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold and ion stiffness offers unique opportunities for validation of the well-established theory of ITG driven modes. Ion stiffness is observed to decrease strongly in the presence of toroidal rotation when the magnetic shear is sufficiently low. This effect is dominant with respect to the well-known ω E×B threshold up-shift and plays a major role in enhancing core confinement in hybrid regimes and ion internal transport barriers. The effects of T e/T i and s/q on ion threshold are found rather weak in the domain explored. Quasi-linear fluid/gyro-fluid and linear/non-linear gyro-kinetic simulations have been carried out. Whilst threshold predictions show good match with experimental observations, some significant discrepancies are found on the stiffness behaviour. © 2011 IOP Publishing Ltd.

Protoplanets with core masses below the critical mass fill in their Roche lobe

Monthly Notices of the Royal Astronomical Society 418:3 (2011) 1928-1934

Authors:

C Terquem, T Heinemann

Abstract:

We study the evolution of a protoplanet of a few earth masses embedded in a protoplanetary disc. If we assume that the atmosphere of the protoplanet, i.e. the volume of gas in hydrostatic equilibrium bound to the core, has a surface radius smaller than the Roche lobe radius, we show that it expands as it accretes both planetesimals and gas at a fixed rate from the nebula until it fills in the Roche lobe. The evolution occurs on a time-scale shorter than the formation or migration time-scales. Therefore, we conclude that protoplanets of a few earth masses have an atmosphere that extends to the Roche lobe surface, where it joins on to the nebula. This is true even when the Bondi radius is smaller than the Roche lobe radius. This is in contrast to the commonly used models in which the static atmosphere extends up to the Bondi radius and is surrounded by a cold accretion flow. As a result, any calculation of the tidal torque exerted by the disc on to the protoplanet should exclude the material present in the Roche lobe, since it is bound to the protoplanet. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.