Cosmic ray acceleration to ultrahigh energy in radio galaxies

(2019)

Authors:

James H Matthews, Anthony R Bell, Anabella T Araudo, Katherine M Blundell

Studying the H-alpha line of the B[ e ] supergiant binary GG Carinae using high-cadence optical spectroscopy

Proceedings of the International Astronomical Union (2019) 123-124

Authors:

A Porter, K Blundell, S Lee

Abstract:

© International Astronomical Union 2019. We present a case study of GG Carinae (GG Car), a Galactic B[ e ] supergiant binary having significant eccentricity (0.28), based on Global Jet Watch spectroscopy data which has been collecting high-time-sampled optical spectra since early 2015. GG Car has so far not been observed in the X-ray band, however it is of similar phenomenology to known X-ray binaries and may therefore be an obscured X-ray source. We have discovered that the absorption component of the H-alpha line displays a '1/462-478-day period in both equivalent width and wavelength centroid indicating cycles in the dynamics of the circumstellar environment, such as precession of the circumbinary or circumprimary disk. Circumbinary disk precession is an as-of-yet underexplored origin of super-orbital variations in the X-ray flux of X-ray binaries, since the rate of precession is generally much longer than the orbital period of the inner binary.

On the maximum energy of protons in the hotspots of AGN jets

EPJ Web of Conferences EDP Sciences 210 (2019) 04006

Authors:

Anabella T Araudo, Anthony R Bell, James Matthews, Katherine Blundell

SS433's jet trace from ALMA imaging and Global Jet Watch spectroscopy: evidence for post-launch particle acceleration

(2018)

Authors:

Katherine Blundell, Robert Laing, Steven Lee, Anita Richards

Ultra-high energy cosmic rays from shocks in the lobes of powerful radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 482:4 (2018) 4303-4321

Authors:

James Matthews, Bryn Bell, Katherine Blundell, AT Araudo

Abstract:

The origin of ultra-high energy cosmic rays (UHECRs) has been an open question for decades. Here, we use a combination of hydrodynamic simulations and general physical arguments to demonstrate that UHECRs can in principle be produced by diffusive shock acceleration (DSA) in shocks in the backflowing material of radio galaxy lobes. These shocks occur after the jet material has passed through the relativistic termination shock. Recently, several authors have demonstrated that highly relativistic shocks are not effective in accelerating UHECRs. The shocks in our proposed model have a range of non-relativistic or mildly relativistic shock velocities more conducive to UHECR acceleration, with shock sizes in the range 1 − 10 kpc. Approximately 10% of the jet’s energy flux is focused through a shock in the backflow of M > 3. Although the shock velocities can be low enough that acceleration to high energy via DSA is still efficient, they are also high enough for the Hillas energy to approach 1019−20 eV, particularly for heavier CR composition and in cases where fluid elements pass through multiple shocks. We discuss some of the more general considerations for acceleration of particles to ultra-high energy with reference to giant-lobed radio galaxies such as Centaurus A and Fornax A, a class of sources which may be responsible for the observed anisotropies from UHECR observatories.