Cosmological growth and feedback from supermassive black holes

ArXiv 1305.0286 (2013)

Authors:

P Mocz, Katherine M Blundell, AC Fabian

Abstract:

We develop a simple evolutionary scenario for the growth of supermassive black holes (BHs), assuming growth due to accretion only, to learn about the evolution of the BH mass function from $z=3$ to 0 and from it calculate the energy budgets of different modes of feedback. We tune the parameters of the model by matching the derived X-ray luminosity function (XLF) with the observed XLF of active galactic nuclei. We then calculate the amount of comoving kinetic and bolometric feedback as a function of redshift, derive a kinetic luminosity function and estimate the amount of kinetic feedback and $PdV$ work done by classical double Fanaroff-Riley II (FR II) radio sources. We also derive the radio luminosity function for FR IIs from our synthesized population and set constraints on jet duty cycles. Around 1/6 of the jet power from FR II sources goes into $PdV$ work done in the expanding lobes during the time the jet is on. Anti hierarchical growth of BHs is seen in our model due to addition of an amount of mass being accreted on to all BHs independent of the BH mass. The contribution to the total kinetic feedback by active galaxies in a low accretion, kinetically efficient mode is found to be the most significant at $z<1.5$. FR II feedback is found to be a significant mode of feedback above redshifts $z\sim 1.5$, which has not been highlighted by previous studies.

Near Infrared Extinction at the Galactic Centre

Chapter in Thirty Years of Astronomical Discovery with UKIRT, Springer Nature 37 (2013) 201-206

Authors:

Andrew J Gosling, Reba M Bandyopadhyay, Katherine M Blundell

Inverse Compton X-ray halos around high-z radio galaxies: A feedback mechanism powered by far-infrared starbursts or the CMB?

ArXiv 1210.4548 (2012)

Authors:

Ian Smail, Katherine M Blundell, BD Lehmer, DM Alexander

Abstract:

We report the detection of extended X-ray emission around two powerful high-z radio galaxies (HzRGs) at z~3.6 (4C03.24 & 4C19.71) and use these to investigate the origin of extended, Inverse Compton (IC) powered X-ray halos at high z. The halos have X-ray luminosities of Lx~3e44 erg/s and sizes of ~60kpc. Their morphologies are broadly similar to the ~60-kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either CMB or FIR photons from the dust-obscured starbursts in these galaxies. These observations double the number of z>3 HzRGs with X-ray detected IC halos. We compare the IC X-ray to radio luminosity ratios for these new detections to the two previously detected z~3.8 HzRGs. Given the similar redshifts, we would expect comparable X-ray IC luminosities if CMB mm photons are the seed field for the IC emission. Instead the two z~3.6 HzRGs, which are ~4x fainter in the FIR, also have ~4x fainter X-ray IC emission. Including a further six z>2 radio sources with IC X-ray halos from the literature, we suggest that in the more compact (lobe sizes <100-200kpc), majority of radio sources, the bulk of the IC emission may be driven by scattering of locally produced FIR photons from luminous, dust-obscured starbursts within these galaxies, rather than CMB photons. The resulting X-ray emission can ionise the gas on ~100-200-kpc scales around these systems and thus form their extended Ly-alpha emission line halos. The starburst and AGN activity in these galaxies are thus combining to produce an effective and wide-spread "feedback" process, acting on the long-term gas reservoir for the galaxy. If episodic radio activity and co-eval starbursts are common in massive, high-z galaxies, then this IC-feedback mechanism may affect the star-formation histories of massive galaxies. [Abridged]

The X-ray luminous cluster underlying the z = 1.04 quasar PKS1229-021

Monthly Notices of the Royal Astronomical Society 422:1 (2012) 590-599

Authors:

HR Russell, AC Fabian, GB Taylor, JS Sanders, KM Blundell, CS Crawford, RM Johnstone, E Belsole

Abstract:

We present a 100ks Chandra observation studying the extended X-ray emission around the powerful z= 1.04 quasar PKS1229-021. The diffuse cluster X-ray emission can be traced out to ∼15arcsec (∼120kpc) radius and there is a drop in the calculated hardness ratio inside the central 5arcsec consistent with the presence of a cool core. Radio observations of the quasar show a strong core and a bright, one-sided jet leading to the south-west hotspot and a second hotspot visible on the counter-jet side. Although the wings of the quasar point spread function (PSF) provided a significant contribution to the total X-ray flux at all radii where the extended cluster emission was detected, we were able to accurately subtract the PSF emission using Chandra Ray Tracer and marx simulations. The resulting steep cluster surface brightness profile for PKS1229-021 appears similar to the profile for the FR II (Fanaroff-Riley class II) radio galaxy 3C444, which has a similarly rapid surface brightness drop caused by a powerful shock surrounding the radio lobes. Using a model surface brightness profile based on 3C444, we estimated the total cluster luminosity for PKS1229-021 to be. We discuss the difficulty of detecting cool-core clusters, which host bright X-ray sources, in high redshift surveys. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

The X-ray luminous cluster underlying the z = 1.04 quasar PKS1229-021

ArXiv 1201.5395 (2012)

Authors:

HR Russell, AC Fabian, GB Taylor, JS Sanders, KM Blundell, CS Crawford, RM Johnstone, E Belsole

Abstract:

We present a 100 ks Chandra observation studying the extended X-ray emission around the powerful z=1.04 quasar PKS1229-021. The diffuse cluster X-ray emission can be traced out to ~15 arcsec (~120 kpc) radius and there is a drop in the calculated hardness ratio inside the central 5 arcsec consistent with the presence of a cool core. Radio observations of the quasar show a strong core and a bright, one-sided jet leading to the SW hot spot and a second hot spot visible on the counter-jet side. Although the wings of the quasar PSF provided a significant contribution to the total X-ray flux at all radii where the extended cluster emission was detected, we were able to accurately subtract off the PSF emission using ChaRT and marx simulations. The resulting steep cluster surface brightness profile for PKS1229-021 appears similar to the profile for the FRII radio galaxy 3C444, which has a similarly rapid surface brightness drop caused by a powerful shock surrounding the radio lobes (Croston et al.). Using a model surface brightness profile based on 3C444, we estimated the total cluster luminosity for PKS1229-021 to be L_X ~ 2 x 10^{44} erg/s. We discuss the difficulty of detecting cool core clusters, which host bright X-ray sources, in high redshift surveys.