Cross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra

Publications of the Astronomical Society of Australia Cambridge University Press 42 (2025) e062

Authors:

Konstantinos Tanidis, Jacobo Asorey, Chandra Shekhar Saraf, Catherine Laura Hale, Benedict Bahr-Kalus, David Parkinson, Stefano Camera, Ray Norris, Andrew Hopkins, Maciej Bilicki, Nikhel Gupta

Abstract:

We measured the harmonic-space power spectrum of Galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from to 500. We applied two flux density cuts at and mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18 mJy cut to deviate for due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at 5.5 , irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias and a constant amplitude galaxy bias . By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at mJy ( mJy) with ( ) and a constant amplitude bias with ( ). When is a free parameter for the same models at mJy ( mJy) with the constant model we found ( ), while with the constant amplitude model we measured ( ), respectively. Our results agree at with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.

MeerKAT discovery of a hyperactive repeating fast radio burst source

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:2 (2025) 1685-1700

Authors:

J Tian, I Pastor-Marazuela, KM Rajwade, BW Stappers, K Shaji, KY Hanmer, M Caleb, MC Bezuidenhout, F Jankowski, R Breton, ED Barr, M Kramer, PJ Groot, S Bloemen, P Vreeswijk, D Pieterse, PA Woudt, RP Fender, RAD Wijnands, DAH Buckley

Abstract:

We present the discovery and localization of a repeating fast radio burst (FRB) source from the MeerTRAP project, a commensal fast radio transient search programme using the MeerKAT telescope. FRB 20240619D was first discovered on 2024 June 19 with three bursts being detected within 2 min in the MeerKAT L band (856–1712 MHz). We conducted follow-up observations of FRB 20240619D with MeerKAT using the Ultra-High Frequency (UHF; MHz), L-band and S-band (1968–2843 MHz) receivers one week after its discovery, and recorded a total of 249 bursts. The MeerKAT-detected bursts exhibit band-limited emission with an average fractional bandwidth of 0.31, 0.34, and 0.48 in the UHF, L-band, and S-band, respectively. We find our observations are complete down to a fluence limit of Jy ms, above which the cumulative burst rate follows a power law with and in the UHF and L band, respectively. The near-simultaneous L-band, UHF, and S-band observations reveal a frequency dependent burst rate with more bursts being detected in the L band than in the UHF and S band, suggesting a spectral turnover in the burst energy distribution of FRB 20240619D. Our polarimetric analysis demonstrates that most of the bursts have linear polarization fractions and circular polarization fractions. We find no optical counterpart of FRB 20240619D in the MeerLICHT optical observations simultaneous to the radio observations and set a fluence upper limit in MeerLICHT’s q band of 0.76 Jy ms and an optical-to-radio fluence ratio limit of 0.034 for a 15 s exposure.

MeerKAT discovery of a hyperactive repeating fast radio burst source

(2025)

Authors:

J Tian, I Pastor-Marazuela, KM Rajwade, BW Stappers, K Shaji, KY Hanmer, M Caleb, MC Bezuidenhout, F Jankowski, R Breton, ED Barr, M Kramer, PJ Groot, S Bloemen, P Vreeswijk, D Pieterse, PA Woudt, RP Fender, RAD Wijnands, DAH Buckley

The Evolutionary Map of the Universe: A new radio atlas for the southern hemisphere sky

(2025)

Authors:

AM Hopkins, A Kapinska, J Marvil, T Vernstrom, JD Collier, RP Norris, YA Gordon, SW Duchesne, L Rudnick, N Gupta, E Carretti, CS Anderson, S Dai, G Gürkan, D Parkinson, I Prandoni, S Riggi, CS Saraf, YK Ma, MD Filipović, G Umana, B Bahr-Kalus, BS Koribalski, E Lenc, A Ingallinera, J Afonso, A Ahmad, UT Ahmed, EL Alexander, H Andernach, J Asorey, AJ Battisti, M Bilicki, A Botteon, MJI Brown, M Brüggen, M Cowley, KC Dage, CL Hale, MJ Hardcastle, R Kothes, S Lazarević, Y-T Lin, KJ Luken, JP Moss, J Prathap, SF Rahman, TH Reiprich, CJ Riseley, M Salvato, N Seymour, SS Shabala, DJB Smith, M Vaccari, J Th van Loon, OI Wong, RZE Alsaberi, AD Asher, BD Ball, D Barbosa, N Biava, AC Bradley, R Carvajal, EJ Crawford, TJ Galvin, MT Huynh, DA Leahy, I Matute, VA Moss, C Pappalardo, ZJ Smeaton, V Velović, T Zafar

Super-SNID : an expanded set of SNID classes and templates for the new era of wide-field surveys

(2025)

Authors:

Dylan Magill, Michael D Fulton, Matt Nicholl, Stephen J Smartt, Charlotte R Angus, Shubham Srivastav, Ken W Smith