Relativistic precessing jets powered by an accreting neutron star

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 544:1 (2025) L37-L44

Authors:

FJ Cowie, RP Fender, I Heywood, AK Hughes, K Savard, PA Woudt, F Carotenuto, AJ Cooper, J van den Eijnden, KVS Gasealahwe, SE Motta, P Saikia

Abstract:

Precessing relativistic jets launched by compact objects are rarely directly measured, and present an invaluable opportunity to better understand many features of astrophysical jets. In this Letter we present MeerKAT radio observations of the neutron star X-ray binary system (NSXB) Circinus X-1 (Cir X-1). We observe a curved S-shaped morphology on scales in the radio emission around Cir X-1. We identify flux density and position changes in the S-shaped emission on year time-scales, robustly showing its association with relativistic jets. The jets of Cir X-1 are still propagating with mildly relativistic velocities from the core, the first time such large scale jets have been seen from a NSXB. The position angle of the jet axis is observed to vary on year time-scales, over an extreme range of at least . The morphology and position angle changes of the jet are best explained by a smoothly changing launch direction, verifying suggestions from previous literature, and indicating that precession of the jets is occurring. Steady precession of the jet is one interpretation of the data, and if occurring, we constrain the precession period and half-opening angle to yr and , respectively, indicating precession in a different parameter space to similar known objects such as SS 433.

COSMOS-Web: The emergence of the Hubble sequence

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

M Huertas-Company, M Shuntov, Y Dong, M Walmsley, O Ilbert, HJ McCracken, HB Akins, N Allen, CM Casey, L Costantin, E Daddi, A Dekel, M Franco, IL Garland, T Géron, G Gozaliasl, M Hirschmann, JS Kartaltepe, AM Koekemoer, C Lintott, D Liu, R Lucas, K Masters, F Pacucci, L Paquereau, PG Pérez-González, JD Rhodes, BE Robertson, B Simmons, R Smethurst, S Toft, L Yang

Abstract:

The first JWST deep surveys have expanded our understanding of the morphological evolution of galaxies across cosmic time. The improved spatial resolution and near-infrared (NIR) coverage have revealed a population of morphologically evolved galaxies at very early epochs. However, all previous works are based on relatively small samples; this has prevented accurate probing of the morphological diversity at cosmic dawn. Leveraging the wide area coverage of the COSMOS-Web survey, we quantified the abundance of different morphological types from z∼7 with unprecedented statistics and established robust constraints on the epoch of emergence of the Hubble sequence. We measured the global morphologies (spheroids, disk-dominated, bulge-dominated, peculiar) and resolved morphologies (stellar bars) for about 400,000 galaxies down to F150W=27 using deep learning; this represents an increase of two orders of magnitude over previous studies. We provide reference stellar mass functions (SMFs) of different morphologies between z∼0.2 and z∼7 as well as best-fit parameters to inform models of galaxy formation. All catalogs and data are made publicly available. At redshift ( z > 4.5 ), the massive galaxy population (łog M_*/M_⊙>10) is dominated by disturbed morphologies (( ∼70% )), even in the optical rest frame, and very compact objects (( ∼30% )) with effective radii smaller than ( ∼500 pc ). This confirms that a significant fraction of the star formation at cosmic dawn occurs in very dense regions, although the stellar mass for these systems could be overestimated. Galaxies with Hubble-type morphologies, including bulge- and disk-dominated galaxies, arose rapidly around ( z ∼ 4 ) and dominate the morphological diversity of massive galaxies as early as ( z ∼ 3 ). Using stellar bars as a proxy, we speculate that stellar disks in massive galaxies might have been common ($>50%$) among the star-forming population since cosmic noon (( z ∼ 2 2.5 )) and formed as early as z∼7. Massive quenched galaxies are predominantly bulge-dominated from ( z ∼ 4 ) onward, suggesting that morphological transformations briefly precede or are simultaneous to quenching mechanisms at the high-mass end. Low-mass (łog M_*/M_⊙<10) quenched galaxies are typically disk-dominated, which points to different quenching routes at the two ends of the stellar mass spectrum from cosmic dawn.

Relativistic precessing jets powered by an accreting neutron star

(2025)

Authors:

FJ Cowie, RP Fender, I Heywood, AK Hughes, K Savard, PA Woudt, F Carotenuto, AJ Cooper, J van den Eijnden, KVS Gasealahwe, SE Motta, P Saikia

The ATLAS Virtual Research Assistant

The Astrophysical Journal American Astronomical Society 990:2 (2025) 201

Authors:

HF Stevance, KW Smith, SJ Smartt, SJ Roberts, N Erasmus, DR Young, A Clocchiatti

Abstract:

We present the Virtual Research Assistant (VRA) of the ATLAS sky survey, which performs preliminary eyeballing on our clean transient data stream. The VRA uses histogram-based gradient-boosted decision tree classifiers trained on real data to score incoming alerts on two axes: “Real” and “Galactic.” The alerts are then ranked using a geometric distance such that the most “real” and “extragalactic” receive high scores; the scores are updated when new lightcurve data is obtained on subsequent visits. To assess the quality of the training we use the recall at rank K, which is more informative to our science goal than general metrics (e.g., accuracy, F1-scores). We also establish benchmarks for our metric based on the pre-VRA eyeballing strategy, to ensure our models provide notable improvements before being added to the ATLAS pipeline. Then, policies are defined on the ranked list to select the most promising alerts for humans to eyeball and to automatically remove bogus alerts. In production the VRA method has resulted in a reduction in eyeballing workload by 85% with a loss of follow-up opportunity <0.08%. It also allows us to automatically trigger follow-up observations with the Lesedi telescope, paving the way toward automated methods that will be required in the era of LSST. Finally, this is a demonstration that feature-based methods remain extremely relevant in our field, being trainable on only a few thousand samples and highly interpretable; they also offer a direct way to inject expertise into models through feature engineering.

Evidence for inverse Compton scattering in high-redshift Lyman-break galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 543:1 (2025) 507-517

Authors:

IH Whittam, MJ Jarvis, Eric J Murphy, NJ Adams, RAA Bowler, A Matthews, RG Varadaraj, CL Hale, I Heywood, K Knowles, L Marchetti, N Seymour, F Tabatabaei, AR Taylor, M Vaccari, A Verma

Abstract:

Radio continuum emission provides a unique opportunity to study star formation unbiased by dust obscuration. However, if radio observations are to be used to accurately trace star formation to high redshifts, it is crucial that the physical processes that affect the radio emission from star-forming galaxies are well understood. While inverse Compton (IC) losses from the cosmic microwave background (CMB) are negligible in the local universe, the rapid increase in the strength of the CMB energy density with redshift [] means that this effect becomes increasingly important at . Using a sample of high-redshift () Lyman-break galaxies selected in the rest-frame ultraviolet (UV), we have stacked radio observations from the MIGHTEE survey to estimate their 1.4-GHz flux densities. We find that for a given rest-frame UV magnitude, the 1.4-GHz flux density and luminosity decrease with redshift. We compare these results to the theoretical predicted effect of energy losses due to IC scattering off the CMB, and find that the observed decrease is consistent with this explanation. We discuss other possible causes for the observed decrease in radio flux density with redshift at a given UV magnitude, such as a top-heavy initial mass function at high redshift or an evolution of the dust properties, but suggest that IC scattering is the most compelling explanation.