The Evolution of Gas-Phase Metallicity and Resolved Abundances in Star-forming Galaxies at z ≈ 0.6 – 1.8

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2020)

Authors:

S Gillman, Al Tiley, Am Swinbank, U Dudzevičiūtė, Rm Sharples, Ian Smail, Cm Harrison, Andrew J Bunker, Martin Bureau, M Cirasuolo, Georgios E Magdis, Trevor Mendel, John P Stott

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We present an analysis of the chemical abundance properties of ≈650 star-forming galaxies at z ≈ 0.6 – 1.8. Using integral-field observations from the K - band Multi-Object Spectrograph (KMOS), we quantify the [N ii]/Hα emission-line ratio, a proxy for the gas-phase Oxygen abundance within the interstellar medium. We define the stellar mass – metallicity relation at z ≈ 0.6 – 1.0 and z ≈ 1.2 – 1.8 and analyse the correlation between the scatter in the relation and fundamental galaxy properties (e.g. Hα star-formation rate, Hα specific star-formation rate, rotation dominance, stellar continuum half-light radius and Hubble-type morphology). We find that for a given stellar mass, more highly star-forming, larger and irregular galaxies have lower gas-phase metallicities, which may be attributable to their lower surface mass densities and the higher gas fractions of irregular systems. We measure the radial dependence of gas-phase metallicity in the galaxies, establishing a median, beam smearing-corrected, metallicity gradient of ΔZ/ΔR= 0.002 ± 0.004 dex kpc−1, indicating on average there is no significant dependence on radius. The metallicity gradient of a galaxy is independent of its rest-frame optical morphology, whilst correlating with its stellar mass and specific star-formation rate, in agreement with an inside-out model of galaxy evolution, as well as its rotation dominance. We quantify the evolution of metallicity gradients, comparing the distribution of ΔZ/ΔR in our sample with numerical simulations and observations at z ≈ 0 – 3. Galaxies in our sample exhibit flatter metallicity gradients than local star-forming galaxies, in agreement with numerical models in which stellar feedback plays a crucial role redistributing metals.</jats:p>

Cosmological 3D H I gas map with HETDEX Ly alpha emitters and eBOSS QSOs at z=2: IGM-Galaxy/QSO connection and a similar to 40 Mpc scale giant H ii bubble candidate

Astrophysical Journal IOP Publishing 903 (2020) 24

Authors:

Shiro Mukae, Masami Ouchi, Gary J Hill, Karl Gebhardt, Erin Mentuch Cooper, Donghui Jeong, Shun Saito, Maximilian Fabricius, Eric Gawiser, Robin Ciardullo, Daniel Farrow, Dustin Davis, Greg Zeimann, Steven L Finkelstein, Caryl Gronwall, Chenxu Liu, Yechi Zhang, Chris Byrohl, Yoshiaki Ono, Donald P Schneider, Matthew Jarvis, Caitlin M Casey, Ken Mawatari

Abstract:

We present cosmological (30−400 Mpc) distributions of neutral hydrogen (H i) in the intergalactic medium (IGM) traced by Lyα emitters (LAEs) and QSOs at z = 2.1–2.5, selected with the data of the ongoing Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the eBOSS survey. Motivated by a previous study of Mukae et al., we investigate spatial correlations of LAEs and QSOs with H i tomography maps reconstructed from H i Lyα forest absorption in the spectra of background galaxies and QSOs obtained by the CLAMATO survey and this study, respectively. In the cosmological volume far from QSOs, we find that LAEs reside in regions of strong H i absorption, i.e., H i rich, which is consistent with results of previous galaxy−background QSO pair studies. Moreover, there is an anisotropy in the H i distribution plot of transverse and line-of-sight distances; on average the H i absorption peak is blueshifted by ~200 km s−1 from the LAE Lyα redshift, reproducing the known average velocity offset between the Lyα emission redshift and the galaxy systemic redshift. We have identified a ~40 Mpc scale volume of H i underdensity that is a candidate for a giant H ii bubble, where six QSOs and an LAE overdensity exist at $\left\langle z\right\rangle =2.16$. The coincidence of the QSO and LAE overdensities with the H i underdensity indicates that the ionizing photon radiation of the QSOs has created a highly ionized volume of multiple proximity zones in a matter overdensity. Our results suggest an evolutionary picture where H i gas in an overdensity of galaxies becomes highly photoionized when QSOs emerge in the galaxies.

The Evolution of Gas-Phase Metallicity and Resolved Abundances in Star-forming Galaxies at $z \approx0.6-1.8$

(2020)

Authors:

S Gillman, AL Tiley, AM Swinbank, U Dudzevičiūtė, RM Sharples, Ian Smail, CM Harrison, Andrew J Bunker, Martin Bureau, M Cirasuolo, Georgios E Magdis, Trevor Mendel, John P Stott

Probing jet launching in neutron star X-ray binaries: the variable and polarized jet of SAX J1808.4-3658

(2020)

Authors:

MC Baglio, DM Russell, S Crespi, S Covino, A Johar, J Homan, DM Bramich, P Saikia, S Campana, P D'Avanzo, RP Fender, P Goldoni, AJ Goodwin, F Lewis, N Masetti, A Miraval Zanon, SE Motta, T Muñoz-Darias, T Shahbaz

The Young Supernova Experiment: Survey Goals, Overview, and Operations

(2020)

Authors:

DO Jones, RJ Foley, G Narayan, J Hjorth, ME Huber, PD Aleo, KD Alexander, CR Angus, K Auchettl, VF Baldassare, SH Bruun, KC Chambers, D Chatterjee, DL Coppejans, DA Coulter, L DeMarchi, G Dimitriadis, MR Drout, A Engel, KD French, A Gagliano, C Gall, T Hung, L Izzo, WV Jacobson-Galán, CD Kilpatrick, H Korhonen, R Margutti, SI Raimundo, E Ramirez-Ruiz, A Rest, C Rojas-Bravo, MR Siebert, SJ Smartt, KW Smith, G Terreran, Q Wang, R Wojtak, A Agnello, Z Ansari, N Arendse, A Baldeschi, PK Blanchard, D Brethauer, JS Bright, JS Brown, TJL deBoer, SA Dodd, JR Fairlamb, C Grillo, A Hajela, C Hede, AN Kolborg, JAP Law-Smith, C-C Lin, EA Magnier, K Malanchev, D Matthews, B Mockler, D Muthukrishna, Y-C Pan, H Pfister, DK Ramanah, S Rest, A Sarangi, SL Schrøder, C Stauffer, MC Stroh, KL Taggart, S Tinyanont, RJ Wainscoat