The XXL Survey: XLII. Detection and characterisation of the galaxy population of distant galaxy clusters in the XXL-N/VIDEO field: A tale of variety

Astronomy and Astrophysics EDP Sciences 642 (2020) A124

Authors:

A Trudeau, C Garrel, J Willis, M Pierre, F Gastaldello, L Chiappetti, S Ettori, K Umetsu, C Adami, N Adams, Raa Bowler, L Faccioli, B Haeussler, M Jarvis, E Koulouridis, Jp Le Fevre, F Pacaud, B Poggianti, T Sadibekova

Abstract:

Context. Distant galaxy clusters provide an effective laboratory in which to study galaxy evolution in dense environments and at early cosmic times. Aims. We aim to identify distant galaxy clusters as extended X-ray sources that are coincident with overdensities of characteristically bright galaxies. Methods. We used optical and near-infrared data from the Hyper Suprime-Cam and VISTA Deep Extragalactic Observations (VIDEO) surveys to identify distant galaxy clusters as overdensities of bright, zphot = 0:8 galaxies associated with extended X-ray sources detected in the ultimate XMM extragalactic survey (XXL). Results. We identify a sample of 35 candidate clusters at 0:80 = z = 1:93 from an approximately 4.5 deg2 sky area. This sample includes 15 newly discovered candidate clusters, ten previously detected but unconfirmed clusters, and ten spectroscopically confirmed clusters. Although these clusters host galaxy populations that display a wide variety of quenching levels, they exhibit well-defined relations between quenching, cluster-centric distance, and galaxy luminosity. The brightest cluster galaxies (BCGs) within our sample display colours that are consistent with a bimodal population composed of an old and red sub-sample together with a bluer, more diverse sub-sample. Conclusions The relation between galaxy masses and quenching seem to already be in place at z ~ 1, although there is no significant variation in the quenching fraction with the cluster-centric radius. The BCG bimodality might be explained by the presence of a younger stellar component in some BCGs, but additional data are needed to confirm this scenario.

An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 499:1 (2020) 482-504

Authors:

M Nicholl, T Wevers, SR Oates, KD Alexander, G Leloudas, F Onori, A Jerkstrand, S Gomez, S Campana, I Arcavi, P Charalampopoulos, M Gromadzki, N Ihanec, PG Jonker, A Lawrence, I Mandel, S Schulze, P Short, J Burke, C McCully, D Hiramatsu, DA Howell, C Pellegrino, H Abbot, JP Anderson, E Berger, PK Blanchard, G Cannizzaro, T-W Chen, M Dennefeld, L Galbany, S González-Gaitán, G Hosseinzadeh, C Inserra, I Irani, P Kuin, T Müller-Bravo, J Pineda, NP Ross, R Roy, SJ Smartt, KW Smith, B Tucker, Ł Wyrzykowski, DR Young

Modelling burning thermonuclear plasma

Philosophical Transactions A: Mathematical, Physical and Engineering Sciences Royal Society 378:2184 (2020) 20200014

Authors:

Steven J Rose, Peter Hatfield, Robbie HH Scott

Abstract:

Considerable progress towards the achievement of thermonuclear burn using inertial confinement fusion has been achieved at the National Ignition Facility in the USA in the last few years. Other drivers, such as the Z-machine at Sandia, are also making progress towards this goal. A burning thermonuclear plasma would provide a unique and extreme plasma environment; in this paper we discuss (a) different theoretical challenges involved in modelling burning plasmas not currently considered, (b) the use of novel machine learning-based methods that might help large facilities reach ignition, and (c) the connections that a burning plasma might have to fundamental physics, including quantum electrodynamics studies, and the replication and exploration of conditions that last occurred in the first few minutes after the Big Bang.

The infrared-radio correlation of star-forming galaxies is strongly M$_{\star}$-dependent but nearly redshift-invariant since z$\sim$4

ArXiv 2010.0551 (2020)

Authors:

I Delvecchio, E Daddi, MT Sargent, MJ Jarvis, D Elbaz, S Jin, D Liu, IH Whittam, H Algera, R Carraro, C D'Eugenio, J Delhaize, BS Kalita, S Leslie, D Cs Molnar, M Novak, I Prandoni, V Smolcic, Y Ao, M Aravena, F Bournaud, JD Collier, SM Randriamampandry, Z Randriamanakoto, G Rodighiero, J Schober, SV White, G Zamorani

Discovery of optical outflows and inflows in the black hole candidate GRS 1716−249

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 498:1 (2020) 25-32

Authors:

VA Cúneo, T Muñoz-Darias, J Sánchez-Sierras, F Jiménez-Ibarra, M Armas Padilla, DAH Buckley, J Casares, P Charles, JM Corral-Santana, R Fender, JA Fernández-Ontiveros, D Mata Sánchez, G Panizo-Espinar, G Ponti, MAP Torres