The KMOS Cluster Survey (KCS). II. The Effect of Environment on the Structural Properties of Massive Cluster Galaxies at Redshift 1.39 < z < 1.61

ASTROPHYSICAL JOURNAL 856:1 (2018) ARTN 8

Authors:

JCC Chan, A Beifiori, RP Saglia, JT Mendel, JP Stott, R Bender, A Galametz, DJ Wilman, M Cappellari, RL Davies, RCW Houghton, LJ Prichard, IJ Lewis, R Sharples, M Wegner

From light to baryonic mass: the effect of the stellar mass-to-light ratio on the Baryonic Tully–Fisher relation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 474:4 (2018) 4366-4384

Authors:

Anastasia A Ponomareva, Marc AW Verheijen, Emmanouil Papastergis, Albert Bosma, Reynier F Peletier

The SLUGGS Survey: A comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to $\sim$4 effective radii

ArXiv 1803.02373 (2018)

Authors:

Sabine Bellstedt, Duncan A Forbes, Aaron J Romanowsky, Rhea-Silvia Remus, Adam RH Stevens, Jean P Brodie, Adriano Poci, Richard McDermid, Adebusola Alabi, Leonie Chevalier, Caitlin Adams, Anna Ferré-Mateu, Asher Wasserman, Viraj Pandya

SPIRITS 16tn in NGC 3556: A heavily obscured and low-luminosity supernova at 8.8 Mpc

(2018)

Authors:

Jacob E Jencson, Mansi M Kasliwal, Scott M Adams, Howard E Bond, Ryan M Lau, Joel Johansson, Assaf Horesh, Kunal P Mooley, Robert Fender, Kishalay De, Dónal O'Sullivan, Frank J Masci, Ann Marie Cody, Nadia Blagorodnova, Ori D Fox, Robert D Gehrz, Peter A Milne, Daniel A Perley, Nathan Smith, Schuyler D Van Dyk

Donald Lynden-Bell (1935-2018)

Nature Nature Publishing Group 555:7695 (2018) 166

Abstract:

In 1969, Donald Lynden-Bell became the first astrophysicist to suggest that supermassive black holes in the cores of galaxies might generate the profuse energy put out by quasars — the astonishingly luminous distant bodies identified by astronomer Maarten Schmidt earlier that decade. Lynden-Bell proposed that quasars are powered by the release of gravitational energy as material falls into the deep potential well of the black hole, a process that is much more efficient than thermonuclear fusion