Implications for the origin of early-type dwarf galaxies - the discovery of rotation in isolated, low-mass early-type galaxies
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 468:3 (2017) 2850-2864
Resolved, expanding jets in the Galactic black hole candidate XTE J1908+094
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 468:3 (2017) 2788-2802
The prevalence of core emission in faint radio galaxies in the SKA Simulated Skies
Monthly Notices of the Royal Astronomical Society Oxford University Press 471:1 (2017) 908-913
Abstract:
Empirical simulations based on extrapolations from well-established low-frequency (<5 GHz) surveys fail to accurately model the faint, high frequency (>10 GHz) source population; they underpredict the number of observed sources by a factor of 2 below S18GHz = 10 mJy and fail to reproduce the observed spectral index distribution. We suggest that this is because the faint radio galaxies are not modelled correctly in the simulations and show that by adding a flat-spectrum core component to the Fanaroff and Riley type-I (FRI) sources in the Square Kilometre Array (SKA) Simulated Skies, the observed 15 GHz source counts can be reproduced. We find that the observations are best matched by assuming that the fraction of the total 1.4 GHz flux density that originates from the core varies with 1.4 GHz luminosity; sources with 1.4 GHz luminosities < 1025 W Hz − 1 require a core fraction ∼0.3, while the more luminous sources require a much smaller core fraction of 5 × 10−4. The low luminosity FRI sources with high core fractions that were not included in the original simulation may be equivalent to the compact ‘FR0’ sources found in recent studies.The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 468:2 (2017) 1824-1849
Far-infrared emission in luminous quasars accompanied by nuclear outflows
Monthly Notices of the Royal Astronomical Society Oxford University Press 470:2 (2017) 2314-2319