ANOMALOUS MICROWAVE EMISSION FROM THE H ii REGION RCW175

The Astrophysical Journal American Astronomical Society 690:2 (2009) 1585-1589

Authors:

C Dickinson, RD Davies, JR Allison, JR Bond, S Casassus, K Cleary, RJ Davis, ME Jones, BS Mason, ST Myers, TJ Pearson, ACS Readhead, JL Sievers, AC Taylor, M Todorović, GJ White, PN Wilkinson

An 80-kpc Lyα halo around a high-redshift type-2 quasi-stellar object

Monthly Notices of the Royal Astronomical Society 393:1 (2009) 309-316

Authors:

DJB Smith, MJ Jarvis, C Simpson, A Martínez-Sansigre

Abstract:

We announce the discovery of an extended emission-line region associated with a high-redshift type-2 quasi-stellar object (QSO). The halo, which was discovered in our new wide-field narrow-band survey, resides at z = 2.85 in the Spitzer First Look Survey region and is extended over ∼80 kpc. Deep very long baseline interferometry (VLBI) observations imply that approximately 50 per cent of the radio emission is extended on scales >200 pc. The inferred active galactic nuclei (AGN) luminosity is sufficient to ionize the extended halo, and the optical emission is consistent with being triggered coevally with the radio source. The Lyα halo is as luminous as those found around high-redshift radio galaxies; however, the active nucleus is several orders of magnitude less luminous at radio wavelengths than those Fanarof-Riley type II (FRIIs) more commonly associated with extended emission-line regions. AMS05 appears to be a high-redshift analogue to the radio-quiet quasar E1821+643 which is core dominated, but which also exhibits extended Fanarof-Riley type I (FRI)-like structure and contains an optically powerful AGN. We also find evidence for more quiescent kinematics in the Lyα emission line in the outer regions of the halo, reminiscent of the haloes around the more powerful FRIIs. The optical to mid-infrared spectral energy distribution is well described by a combination of an obscured QSO (Lbol ∼ 3.4 ± 0.2 × 1013 L⊙) and a 1.4 Gyr old simple stellar population with mass ∼3.9 ± 0.3 × 10 11 M⊙. © 2009 RAS.

An H I view of the on-going assembly of early-type galaxies: Present and future observations

Proceedings of Science 89 (2009)

Authors:

P Serra, R Morganti, TA Oosterloo, K Alatalo, L Blitz, M Bois, RCE Van Den Bosch, F Bournaud, M Bureau, M Cappellari, RL Davies, TA Davis, P Duc, E Emsellem, J Falcón-Barroso, S Khochfar, D Krajnović, H Kuntschner, PY Lablanche, RM McDermid, T Naab, M Sarzi, N Scott, G Van De Ven, A Weijmans, LM Young, PT De Zeeuw

Abstract:

We present a preliminary analysis of the H I properties of early-type galaxies in the ATLAS3D sample. Using WSRT data for ~100 galaxies outside the Virgo cluster and data from the Alfalfa project for galaxies inside Virgo, we discuss the dependence of H I properties on environment. We detect H I in about half of the galaxies outside Virgo. For these systems, the H I morphology and kinematics change as a function of environment, going from regular, rotating systems around “isolated” galaxies to progressively more disturbed structures for galaxies with neighbours or in groups. In denser environment, inside Virgo, nearly none of the galaxies contains H I. We discuss future work in this field which will be enabled by next-generation, pre-SKA radio instruments. We present a simulated Apertif H I observation of an ATLAS3D early-type galaxy, showing how its appearance and detection level vary as a function of redshift.

An anticorrelation between X-ray luminosity and Hα equivalent width in X-ray binaries

Monthly Notices of the Royal Astronomical Society 393:4 (2009) 1608-1616

Authors:

RP Fender, DM Russell, C Knigge, R Soria, RI Hynes, M Goad

Abstract:

We report an anticorrelation between continuum luminosity and the equivalent width (EW) of the Hα emission line in X-ray binary systems. The effect is evident both in a universal monotonic increase in Hα EW with time following outbursts, as systems fade, and in a comparison between measured EWs and contemporaneous X-ray measurements. The effect is most clear for black hole binaries in the low/hard X-ray state, which is prevalent at X-ray luminosities below ∼1 per cent of the Eddington luminosity. We do not find strong evidence for significant changes in line profiles across accretion state changes, but this is hampered by a lack of good data at such times. The observed anticorrelation, highly significant for black hole binaries, is only marginally so for neutron star systems, for which there are far less data. Comparison with previously established correlations between optical and X-ray luminosity suggests that the line luminosity is falling as the X-ray and optical luminosities drop, but not as fast, approximately, as LHα ∝ L∼0.4X ∝ L∼0.7opt. We briefly discuss possible origins for such an effect, including the optical depth, form of the irradiating spectrum and geometry of the accretion flow. Further refinement of the relation in the future may allow measurements of Hα EW to be used to estimate the luminosity of, and hence the distance to, X-ray binary systems. Beyond this, further progress will require a better sample of spectrophotometric data. © 2009 RAS.

Anomalous microwave emission from the H II region RCW175

Astrophysical Journal 690:2 (2009) 1585-1589

Authors:

C Dickinson, RD Davies, JR Allison, JR Bond, S Casassus, K Cleary, RJ Davis, ME Jones, BS Mason, ST Myers, TJ Pearson, ACS Readhead, JL Sievers, AC Taylor, M Todorović, GJ White, PN Wilkinson

Abstract:

We present evidence for anomalous microwave emission in the RCW175 H II region. Motivated by 33 GHz 13′ resolution data from the Very Small Array (VSA), we observed RCW175 at 31 GHz with the Cosmic Background Imager (CBI) at a resolution of 4′. The region consists of two distinct components, G29.0-0.6 and G29.1-0.7, which are detected at high signal-to-noise ratio. The integrated flux density is 5.97 0.30 Jy at 31 GHz, in good agreement with the VSA. The 31 GHz flux density is 3.28 0.38 Jy (8.6σ) above the expected value from optically thin free-free emission based on lower frequency radio data and thermal dust constrained by IRAS and WMAP data. Conventional emission mechanisms such as optically thick emission from ultracompact H II regions cannot easily account for this excess. We interpret the excess as evidence for electric dipole emission from small spinning dust grains, which does provide an adequate fit to the data. © 2009. The American Astronomical Society. All rights reserved.