The KMOS Cluster Survey (KCS). I. The fundamental plane and the formation ages of cluster galaxies at redshift 1.4 < Z < 1.6

Astrophysical Journal American Astronomical Society 846:2 (2017) 1-25

Authors:

A Beifiori, JT Mendel, JCC Chan, RP Saglia, R Bender, Michele Cappellari, Roger L Davies, A Galametz, Ryan CW Houghton, Laura J Prichard, R Smith, John P Stott, DJ Wilman, Ian J Lewis, R Sharples, M Wegner

Abstract:

The American Astronomical Society. All rights reserved. We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies (M· > ×4 10 10 M·) in three known overdensities at 1.39 1.61 < < z from the K-band Multi-object Spectrograph (KMOS) Cluster Survey, a guaranteed-time program with spectroscopy from the KMOS at the VLT and imaging from the Hubble Space Telescope. As expected, we find that the FP zero-point in B band evolves with redshift, from the value 0.443 of Coma to -0.10±0.09, -0.19±0.05, and -0.29±0.12 for our clusters at z = 1.39, z = 1.46, and z = 1.61, respectively. For the most massive galaxies (log 1 M M· > 1) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio M/L evolution, finding D log 0.46 0.10 M L z B = - (D log )0.52 0.07 M L z B = -to(D log ) 0.55 0.10 M L z B = - respectively. We assess the potential contribution of the galaxy structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be ∼6%-35% of the FP zero-point evolution. The rate of M/L evolution is consistent with galaxies evolving passively. Using single stellar population models, we find an average age of 2.33- +0.51 0.86 Gyr for the log 1 M M· > 1 galaxies in our massive and virialized cluster at z = 1.39,1.59- +0.62 1.40 Gyr in a massive but not virialized cluster at z = 1.46, and 1.20- +0.47 1.03 Gyr in a protocluster at z = 1.61. After accounting for the difference in the age of the universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older.

Spectral differences between the jets in ‘radio loud’ and ‘radio quiet’ hard state black hole binaries

Monthly Notices of the Royal Astronomical Society Oxford University Press 473:3 (2017) 4122-4129

Authors:

M Espinasse, Robert Fender

Abstract:

We have compiled from the available literature a large set of radio measurements of black hole binaries in the hard X-ray state for which measurements of the gigahertz frequency radio spectral index are possible. We separate the sample into `radio loud' and `radio quiet' subsets based upon their distribution in the radio -- X-ray plane, and investigate the distribution of radio spectral indices within each subset. The distribution of spectral indices of the `radio loud' subset is well described by a Gaussian distribution with mean spectral index $\alpha = +0.2$ and standard deviation $0.2$ (here spectral index is defined such that a positive spectral index means more flux at higher frequencies). The sparser sample for the `radio quiet' subset can be approximated, less well, by a Gaussian with mean $\alpha = -0.2$ and standard deviation $0.3$; alternatively the simple mean of the distribution of the radio quiet subset is $-0.3$. The two spectral index distributions are different at high statistical significance. Confirming previous work in the literature, we test to see if the differences in observed spectra could result from different distributions of jet viewing angles, but find no evidence for this. We conclude therefore that the jets in the two groups are physically different in some way, and briefly discuss possible origins and further possible diagnostics. Finally we note that extrapolating to lower frequencies the two subsets move closer together in the radio -- X-ray plane, and approximately merge into a single distribution at around 400 MHz.

Towards rapid transient identification and characterization of kilonovae

(2017)

Authors:

Michael Coughlin, Tim Dietrich, Kyohei Kawaguchi, Stephen Smartt, Christopher Stubbs, Maximiliano Ujevic

Environmental quenching and galactic conformity in the galaxy cross-correlation signal

Monthly Notices of the Royal Astronomical Society Oxford University Press (2017)

Authors:

Peter Hatfield, Matthew Jarvis

Abstract:

It has long been known that environment has a large effect on star formation in galaxies. There are several known plausible mechanisms to remove the cool gas needed for star formation, such as strangulation, harassment and ram-pressure stripping. It is unclear which process is dominant, and over what range of stellar mass. In this paper, we find evidence for suppression of the cross-correlation function between massive galaxies and less massive star-forming galaxies, giving a measure of how less likely a galaxy is to be star-forming in the vicinity of a more massive galaxy. We develop a formalism for modelling environmental quenching mechanisms within the Halo Occupation Distribution formalism. We find that at $z \sim 2$ environment is not a significant factor in determining quenching of star-forming galaxies, and that galaxies are quenched with similar probabilities in group environments as they are globally. However, by $z \sim 0.5$ galaxies are much less likely to be star forming when in a group environment than when not. This increased probability of being quenched does not appear to have significant radial dependence within the halo, supportive of the quenching being caused by the halting of fresh inflows of pristine gas, as opposed to by tidal stripping. Furthermore, by separating the massive sample into passive and star-forming, we see that this effect is further enhanced when the central galaxy is passive. This effect is present only in the 1-halo term (within a halo) at high redshifts ($z>1$), but is apparent in the 2-halo term at lower redshifts ($z<1$), a manifestation of galactic conformity.

Galaxy Zoo and SpArcFiRe: Constraints on spiral arm formation mechanisms from spiral arm number and pitch angles

Monthly Notices of the Royal Astronomical Society Oxford University Press 472:2 (2017) 2263-2279

Authors:

RE Hart, SP Bamford, WB Hayes, CN Cardamone, WC Keel, Sandor J Kruk, Christopher Lintott, KL Masters, BD Simmons, RJ Smethurst

Abstract:

In this paper we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6,222 SDSS spiral galaxies is selected. We use the machine vision algorithm SpArcFiRe to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4-6) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-arm structures are looser (by 2) than those in two-arm galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.