Laboratory Study of Bilateral Supernova Remnants and Continuous MHD Shocks
ASTROPHYSICAL JOURNAL 896:2 (2020) ARTN 167
Abstract:
© 2020. The American Astronomical Society. All rights reserved. Many supernova remnants (SNRs), such as G296.5+10.0, exhibit an axisymmetric or barrel shape. Such morphologies have previously been linked to the direction of the Galactic magnetic field, although this remains uncertain. These SNRs generate magnetohydrodynamic shocks in the interstellar medium, modifying its physical and chemical properties. The ability to study these shocks through observations is difficult due to the small spatial scales involved. In order to answer these questions, we perform a scaled laboratory experiment in which a laser-generated blast wave expands under the influence of a uniform magnetic field. The blast wave exhibits a spheroidal shape, whose major axis is aligned with the magnetic field, in addition to a more continuous shock front. The implications of our results are discussed in the context of astrophysical systems.Axion detection through resonant photon-photon collisions
Physical Review D American Physical Society (APS) 101:9 (2020) 95018
Axion detection through resonant photon-photon collisions
Physical Review D American Physical Society 101:9 (2020) 95018
Abstract:
We investigate the prospect of an alternative laboratory-based search for the coupling of axions and axionlike particles to photons. Here, the collision of two laser beams resonantly produces axions, and a signal photon is detected after magnetic reconversion, as in light-shining-through-walls (LSW) experiments. Conventional searches, such as LSW or anomalous birefringence measurements, are most sensitive to axion masses for which substantial coherence can be achieved; this is usually well below optical energies. We find that using currently available high-power laser facilities, the bounds that can be achieved by our approach outperform traditional LSW at axion masses between 0.5–6 eV, set by the optical laser frequencies and collision angle. These bounds can be further improved through coherent scattering off laser substructures, probing axion-photon couplings down to gaγγ∼10−8GeV−1, comparable with existing CAST bounds. Assuming a day long measurement per angular step, the QCD axion band can be reached.Transport of high-energy charged particles through spatially-intermittent turbulent magnetic fields
Astrophysical Journal American Astronomical Society 892:2 (2020) 114
Abstract:
Identifying the sources of the highest energy cosmic rays requires understanding how they are deflected by the stochastic, spatially intermittent intergalactic magnetic field. Here we report measurements of energetic charged-particle propagation through a laser-produced magnetized plasma with these properties. We characterize the diffusive transport of the particles experimentally. The results show that the transport is diffusive and that, for the regime of interest for the highest-energy cosmic rays, the diffusion coefficient is unaffected by the spatial intermittency of the magnetic field.Role of collisionality and radiative cooling in supersonic plasma jet collisions of different materials
Physical Review E American Physical Society 101:2 (2020) 023205