Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades
Proceedings of the National Academy of Sciences National Academy of Sciences 122:45 (2025) e2513365122
Abstract:
The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.Measurement of turbulent velocity and bounds for thermal diffusivity in laser shock compressed foams by X-ray photon correlation spectroscopy
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics American Physical Society 112 (2025) 045218
Abstract:
Experimental benchmarking of transport coefficients under extreme conditions is required for validation of differing theoretical models. To date, measurement of transport properties of dynamically compressed samples remains a challenge with only a limited number of studies able to quantify transport in high pressure and temperature matter. X-ray photon correlation spectroscopy utilizes coherent X-ray sources to measure time correlations of density fluctuations, thus providing measurements of length and time scale dependent transport properties. Here,we present a first-of-a-kind experiment to conduct X-ray photon correlation spectroscopy in laser shock compression experiments. We report measurement of the turbulent velocity in the wake of a laser driven supersonic shock and place an upper bound on thermal diffusivity in a solid density plasma on nanosecond timescales.Learning heat transport kernels using a nonlocal heat transport theory-informed neural network
Physical Review Research American Physical Society (APS) 7:4 (2025) L042017
Abstract:
QSHS: an axion dark matter resonant search apparatus
New Journal of Physics IOP Publishing 27:10 (2025) 105002
Abstract:
We describe a resonant cavity search apparatus for axion dark matter constructed by the quantum sensors for the hidden sector collaboration. The apparatus is configured to search for QCD axion dark matter, though also has the capability to detect axion-like particles, dark photons, and some other forms of wave-like dark matter. Initially, a tuneable cylindrical oxygen-free copper cavity is read out using a low noise microwave amplifier feeding a heterodyne receiver. The cavity is housed in a dilution refrigerator (DF) and threaded by a solenoidal magnetic field, nominally 8 T. The apparatus also houses a magnetic field shield for housing superconducting electronics, and several other fixed-frequency resonators for use in testing and commissioning various prototype quantum electronic devices sensitive at a range of axion masses in the range 2.0– 40μeVc−2. The apparatus as currently configured is intended as a test stand for electronics over the relatively wide frequency band attainable with the TM010 cavity mode used for axion searches. We present performance data for the resonator, DF, and magnet, and plans for the first science run.Modelling cosmic-ray transport: magnetised versus unmagnetised motion in astrophysical magnetic turbulence
Journal of Plasma Physics Cambridge University Press (CUP) 91:5 (2025) E147