Generating ultradense pair beams using 400 GeV/c protons

Physical Review Research American Physical Society 3 (2021) 023103

Authors:

CD Arrowsmith, N Shukla, N Charitonidis, R Boni, H Chen, T Davenne, Anthony Dyson, Dh Froula, JT Gudmundsson, Brian Huffman, Y Kadi, B Reville, S Richardson, S Sarkar, Jl Shaw, Lo Silva, P Simon, Rmgm Trines, R Bingham, G Gregori

Abstract:

An experimental scheme is presented for generating low-divergence, ultradense, relativistic, electron-positron beams using 400 GeV/c protons available at facilities such as HiRadMat and AWAKE at CERN. Preliminary Monte Carlo and particle-in-cell simulations demonstrate the possibility of generating beams containing 1013–1014 electron-positron pairs at sufficiently high densities to drive collisionless beam-plasma instabilities, which are expected to play an important role in magnetic field generation and the related radiation signatures of relativistic astrophysical phenomena. The pair beams are quasineutral, with size exceeding several skin depths in all dimensions, allowing the examination of the effect of competition between transverse and longitudinal instability modes on the growth of magnetic fields. Furthermore, the presented scheme allows for the possibility of controlling the relative density of hadrons to electron-positron pairs in the beam, making it possible to explore the parameter spaces for different astrophysical environments.

Time-resolved turbulent dynamo in a laser plasma

Proceedings of the National Academy of Sciences National Academy of Sciences 118:11 (2021) e2015729118

Authors:

Afa Bott, P Tzeferacos, L Chen, Charlotte Palmer, A Rigby, R Bingham, A Birkel, C Graziani, Dh Froula, J Katz, M Koenig, Mw Kunz, Ck Li, Francesco Miniati, R Petrasso, H-S Park, Ba Remington, B Reville, Js Ross, D Ryu, D Ryutov, F Séguin, Tg White, Dq Lamb, G Gregori

Abstract:

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm<1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm≳1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm≳1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.

High-resolution inelastic x-ray scattering at the high energy density scientific instrument at the European X-Ray Free-Electron Laser (vol 92, 013101, 2021)

REVIEW OF SCIENTIFIC INSTRUMENTS 92:3 (2021) ARTN 039901

Authors:

L Wollenweber, TR Preston, A Descamps, V Cerantola, A Comley, JH Eggert, LB Fletcher, G Geloni, DO Gericke, SH Glenzer, S Goede, J Hastings, OS Humphries, A Jenei, O Karnbach, Z Konopkova, R Loetzsch, B Marx-Glowna, EE McBride, D McGonegle, G Monaco, BK Ofori-Okai, CAJ Palmer, C Plueckthun, R Redmer, C Strohm, I Thorpe, T Tschentscher, I Uschmann, JS Wark, TG White, K Appel, G Gregori, U Zastrau

X-ray radiography based on the phase-contrast imaging with using LiF detector

Journal of Physics: Conference Series IOP Publishing 1787:1 (2021)

Authors:

Ss Makarov, Ta Pikuz, Av Buzmakov, Ap Chernyaev, P Mabey, T Vinci, G Rigon, B Albertazzi, A Casner, V Bouffetier, R Kodama, K Katagiri, N Kamimura, Y Umeda, N Ozaki, E Falize, O Poujade, T Togashi, M Yabashi, T Yabuuchi, Y Inubushi, K Miyanishi, K Sueda, M Manuel, M Koenig

Abstract:

An x-ray radiography technique based upon phase contrast imaging using a lithium fluoride detector has been demonstrated for goals of high energy density physics experiments. Based on the simulation of propagation an x-ray free-electron laser beam through a test-object, the visibility of phase-contrast image depending on an object-detector distance was investigated. Additionally, the metrological capabilities of a lithium fluoride crystal as a detector were demonstrated.

Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles.

Nature communications 12:1 (2021) 334

Authors:

Er Tubman, As Joglekar, Afa Bott, M Borghesi, B Coleman, G Cooper, Cn Danson, P Durey, Jm Foster, P Graham, G Gregori, Et Gumbrell, Mp Hill, T Hodge, S Kar, Rj Kingham, M Read, Cp Ridgers, J Skidmore, C Spindloe, Agr Thomas, P Treadwell, S Wilson, L Willingale, Nc Woolsey

Abstract:

Magnetized plasma interactions are ubiquitous in astrophysical and laboratory plasmas. Various physical effects have been shown to be important within colliding plasma flows influenced by opposing magnetic fields, however, experimental verification of the mechanisms within the interaction region has remained elusive. Here we discuss a laser-plasma experiment whereby experimental results verify that Biermann battery generated magnetic fields are advected by Nernst flows and anisotropic pressure effects dominate these flows in a reconnection region. These fields are mapped using time-resolved proton probing in multiple directions. Various experimental, modelling and analytical techniques demonstrate the importance of anisotropic pressure in semi-collisional, high-β plasmas, causing a reduction in the magnitude of the reconnecting fields when compared to resistive processes. Anisotropic pressure dynamics are crucial in collisionless plasmas, but are often neglected in collisional plasmas. We show pressure anisotropy to be essential in maintaining the interaction layer, redistributing magnetic fields even for semi-collisional, high energy density physics (HEDP) regimes.