An online data analysis framework for small-scale physics experiments

Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment (2026) 171269

Authors:

H Ramm, P Simon, P Alexaki, C Arran, R Bingham, A Goillot, JT Gudmundsson, JWD Halliday, B Lloyd, EE Los, V Stergiou, S Zhang, G Gregori, N Charitonidis

Abstract:

A robust and flexible architecture capable of providing real-time analysis on diagnostic data is of crucial importance to physics experiments. In this paper, we present such an online framework, used in June 2025 as part of the HRMT-68 experiment, performed at the HiRadMat facility at CERN, using the Super Proton Synchrotron (SPS) beam line. HRMT-68 was a fixed-target laboratory astrophysics experiment aiming to identify plasma instabilities generated by a relativistic electron-positron beam during traversal of an argon plasma. This framework was essential for experimental data acquisition and analysis, and can be adapted for a broad range of similar-scale experiments with a variety of experimental diagnostics, even those without a standard direct network communication interface. The developed framework’s customizable design enabled us to rapidly observe and extract emergent features from a diverse range of diagnostic data. Simultaneously, its modularity allowed for a quick introduction of new diagnostic devices and the modification of our analysis as features of interest were identified. As a result, we were able to effectively diagnose equipment malfunction, and infer the beam’s response to varying bunch duration, beam intensity, and the plasma state without resorting to offline analysis, at which time adjustment or improvement would have been impossible. We present the features of this agile framework, whose codebase we have made publicly available so that it may be adapted for future experiments with minimal modification.

Observation of quantum effects on radiation reaction in strong fields.

Nature communications (2026)

Authors:

Eva E Los, Elias Gerstmayr, Christopher Arran, Matthew JV Streeter, Cary Colgan, Claudia C Cobo, Brendan Kettle, Thomas G Blackburn, Nicolas Bourgeois, Luke Calvin, Jason Cardarelli, Niall Cavanagh, Stephen JD Dann, Antonino Di Piazza, Rebecca Fitzgarrald, Anton Ilderton, Christoph H Keitel, Mattias Marklund, Paul McKenna, Christopher D Murphy, Zulfikar Najmudin, Peter Parsons, Paramel Pattathil Rajeev, Daniel R Symes, Matteo Tamburini, Alexander GR Thomas, Jonathan C Wood, Matthew Zepf, Gianluca Sarri, Christopher P Ridgers, Stuart PD Mangles

Abstract:

Radiation reaction, the force experienced by an accelerated charge due to radiation emission, has long been the subject of extensive theoretical and experimental research. Experimental verification of a quantum, strong-field description of radiation reaction is fundamentally important, and has wide-ranging implications for astrophysics, laser-driven particle acceleration, next-generation particle colliders and inverse-Compton photon sources for medical and industrial applications. However, the difficulty of accessing regimes where strong field and quantum effects dominate inhibited previous efforts to observe quantum radiation reaction in charged particle dynamics with high significance. We report a high significance ( > 5σ) observation of strong-field radiation reaction on electron spectra where quantum effects are substantial. We obtain quantitative, strong evidence favouring the quantum-continuous and quantum-stochastic models over the classical model; the quantum models perform comparably. The lower electron energy losses predicted by the quantum models account for their improved performance. Model comparison was performed using a novel Bayesian framework, which has widespread utility for laser-particle collision experiments, including those utilising conventional accelerators, where some collision parameters cannot be measured directly.

Emission of pairs of Minkowski photons through the lens of the Unruh effect

Physical Review D American Physical Society (APS) (2025)

Steady state rotational dynamics of a weakly ionised hydrogen plasma under cross-field configuration

Physics of Plasmas American Institute of Physics 32:12 (2025) 123505

Authors:

H Muir, N Eschbach, G Rodway-Gant, I Vankov, A Chen, B Wrixon, Z Li, A Gunn, Gianluca Gregori

Abstract:

We study a novel device for generating a high speed rotating plasma. The device weakly ionises and accelerates a hydrogen gas in a co-axial cylindrical chamber via the perpendicular configuration of electrodes with a magnetic field generated by a superconducting magnetic. It has been hypothesised that extreme velocities and plasma particle compression could be achieved under this configuration1 . This work develops a rigorous theoretical model of the bulk plasma dynamics under steady state centrifugal operation. By exploiting the axisymmetry of the system, and from application of problem-specific governing assumptions, a steady state 1D model for the rotational dynamics of the bulk plasma is derived. From here, we present fully analytical solutions for the radial profiles of the MHD model: [azimuthal velocity, particle densities, pressure] and a semi-analytical solution for electric potential. Tables of selfconsistent plasma parameters are computed to provide a comprehensive characterisation of the bulk plasma state. The model is able to determine the peak velocities and plasma compression, and permits parametric studies to elucidate the complex and non-linear relationships between operational device settings and the achieved steady state plasma state condition. The new theoretical solutions therefore provide necessary insights into the viability of the novel device for high energy-density plasma applications.

Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades

Proceedings of the National Academy of Sciences National Academy of Sciences 122:45 (2025) e2513365122

Authors:

Charles Arrowsmith, Francesco Miniati, Pablo J Bilbao, Pascal Simon, Archie Bott, Stephane Burger, Hui Chen, Filipe D Cruz, Tristan Davenne, Anthony Dyson, Ilias Efthymiopoulos, Dustin H Froula, Alice Goillot, Jon T Gudmundsson, Dan Haberberger, Jack WD Halliday, Thomas Hodge, Brian T Huffman, Sam Iaquinta, G Marshall, Brian Reville, Subir Sarkar, Alexander Schekochihin, Luis O Silva, Raspberry Simpson, Vasiliki Stergiou, Raoul MGM Trines, Thibault Vieu, Nikolaos Charitonidis, Robert Bingham, Gianluca Gregori

Abstract:

The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.