A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution

Review of Scientific Instruments AIP Publishing 89:2 (2018) 023703

Authors:

U Zastrau, C Rödel, M Nakatsutsumi, T Feigl, K Appel, B Chen, T Döppner, T Fennel, T Fiedler, LB Fletcher, E Förster, E Gamboa, Gericke, S Göde, C Grote-Fortmann, V Hilbert, L Kazak, T Laarmann, HJ Lee, Paul Mabey, F Martinez, KH Meiwes-Broer, H Pauer, M Perske, A Przystaw, S Roling, S Skruszewicz, M Shihab, J Tiggesbäumker, S Toleikis, M Wünsche, H Zacharias, SH Glenzer, Gianluca Gregori

Abstract:

We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense matter studies of micrometer-sized samples in laser-plasma experiments.

Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields

Nature Communications Nature Publishing Group 9 (2018) 1-8

Authors:

M Bailly-Grandvaux, JJ Santos, C Bellei, JE Cross, Gianluca Gregori

Abstract:

Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser–plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.

Evolution of the Design and Fabrication of Astrophysics Targets for Turbulent Dynamo (TDYNO) Experiments on OMEGA

FUSION SCIENCE AND TECHNOLOGY 73:3 (2018) 434-445

Authors:

SA Muller, DN Kaczala, HM Abu-Shawareb, EL Alfonso, LC Carlson, M Mauldin, P Fitzsimmons, D Lamb, P Tzeferacos, L Chen, G Gregori, A Rigby, A Bott, TG White, D Froula, J Katz

Axion particle production in a laser-induced dynamical spacetime

Physics Letters B Elsevier 777 (2017) 388-393

Authors:

M Wadud, B King, R Bingham, Gianluca Gregori

Abstract:

We consider the dynamics of a charged particle (e.g., an electron) oscillating in a laser field in flat spacetime and describe it in terms of the variable mass metric. By applying Einstein’s equivalence principle, we show that, after representing the electron motion in a time-dependent manner, the variable mass metric takes the form of the Friedmann–Lemaître–Robertson–Walker metric. We quantize a pseudoscalar field in this spacetime and derive the production rate of electrically neutral, spinless particles. We show that this approach can provide an alternative experimental method to axion searches.

Proton imaging of stochastic magnetic fields

Journal of Plasma Physics Cambridge University Press 83:6 (2017) 905830614

Authors:

Archie FA Bott, C Graziani, Petros Tzeferacos, P White, DQ Lamb, Gianluca Gregori, Alexander Schekochihin

Abstract:

Recent laser-plasma experiments [1, 2, 3, 4] report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for a complete understanding of the physical processes these experiments are attempting to investigate. In this paper, we show how a proton imaging diagnostic can be used to determine a range of relevant magnetic field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. This ‘Kugland image-flux relation’ was previously derived [5] under simplifying assumptions typically valid in actual proton-imaging set-ups. We conclude that, as in the case of regular electromagnetic fields, features of the beam’s final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter – the contrast parameter µ ≡ ds/MlB – which quantifies the relative size of the correlation length lB of the stochastic field, proton displacements ds due to magnetic deflections, and the image magnification M. For stochastic magnetic fields, we establish the existence of four contrast regimes – linear, nonlinear injective, caustic and diffusive – under which proton-flux images relate to their parent fields in a qualitatively distinct manner. As a consequence, it is demonstrated that in the linear or nonlinear injective regimes, the path-integrated magnetic field experienced by the beam can be extracted uniquely, as can the magnetic-energy spectrum under a further statistical assumption of isotropy. This is no longer the case in the caustic or diffusive regimes. We also discuss complications to the contrast-regime characterisation arising for inhomogeneous, multi-scale stochastic fields, which can encompass many contrast regimes, as well as limitations currently placed by experimental capabilities on one’s ability to extract magnetic field statistics. The results presented in this paper are of consequence in providing a comprehensive description of proton images of stochastic magnetic fields, with applications for improved analysis of individual proton-flux images, or for optimising implementation of proton-imaging diagnostics on future laser-plasma experiments.