Theory of Thomson scattering in inhomogeneous media

Scientific reports Nature Publishing Group 6 (2016) 24283

Authors:

PM Kozlowski, BJ Crowley, SP Regan, Gianluca Gregori

Abstract:

Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.

A laboratory model of post-Newtonian gravity with high power lasers and 4th generation light sources

CLASSICAL AND QUANTUM GRAVITY 33:7 (2016) ARTN 075010

Authors:

G Gregori, MC Levy, MA Wadud, BJB Crowley, R Bingham

Laboratory astrophysical collisionless shock experiments on Omega and NIF

Journal of Physics: Conference Series IOP Publishing Ltd. 688:1 (2016) 012084-012084

Authors:

HS Park, JS Ross, CM Huntington, F Fiuza, D Ryutov, D Casey, RP Drake, G Fiksel, D Froula, Gianluca Gregori, NL Kugland, C Kuranz, MC Levy, CK Li, J Meinecke, T Morita, R Petrasso, C Plechaty, B Remington, Y Sakawa, A Spitkovsky, H Takabe

Abstract:

We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. [1] A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows [2]. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures [3]. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ∼0.01 [4]. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.

Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

8th International Conference on Inertial Fusion Sciences and Applications (IFSA 2013) 8–13 September 2013, Nara, Japan IOP Publishing Ltd. 688:1 (2016) 012071-012071

Authors:

T Morita, NL Kugland, W Wan, R Crowston, RP Drake, F Fiuza, Gianluca Gregori, C Huntington, T Ishikawa, M Koenig, C Kuranz, MC Levy, D Martinez, J Meinecke, F Miniati, CD Murphy, A Pelka, C Plechaty, R Presura, N Quirós, BA Remington, B Reville, JS Ross, DD Ryutov, Y Sakawa, L Steele, H Takabe, Y Yamaura, N Woolsey, HS Park

Abstract:

We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock.

Spherical shock in the presence of an external magnetic field

Journal of Physics: Conference Series IOP Publishing: Conference Series 688:1 (2016) 012056

Authors:

Y Kuramitsu, S Matsukiyo, S Isayama, D Harada, T Oyama, R Fujino, Y Sakawa, T Morita, Y Yamaura, T Ishikawa, T Moritaka, T Sano, K Tomita, R Shimoda, Y Sato, K Uchino, A Pelka, R Crowston, N Woolsey, Gianluca Gregori, M Koenig, CL Yin, YT Li, K Zhang, H Takabe

Abstract:

We investigate spherical collisionless shocks in the presence of an external magnetic field. Spherical collisionless shocks are common resultant of interactions between a expanding plasma and a surrounding plasma, such as the solar wind, stellar winds, and supernova remnants. Anisotropies often observed in shock propagations and their emissions, and it is widely believed a magnetic field plays a major role. Since the local observations of magnetic fields in astrophysical plasmas are not accessible, laboratory experiments provide unique capability to investigate such phenomena. We model the spherical shocks in the universe by irradiating a solid spherical target surrounded by a plasma in the presence of a magnetic field. We present preliminary results obtained by shadowgraphy.