Towards laboratory produced relativistic electron-positron pair plasmas
High Energy Density Physics 7:4 (2011) 225-229
Abstract:
We review recent experimental results on the path to producing electron-positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 1016 cm-3 and 1013 cm-3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 1018 cm-3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter. © 2011 Elsevier B.V.Measuring fast electron distribution functions at intensities up to 10 21 W cm-2
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 653:1 (2011) 137-139
Abstract:
Here we present results from ultra-intense experiments demonstrating the viability of polarization spectroscopy as a diagnostic of the electron return current and spatial anisotropy and distribution function of the fast electron beam. The measurements extend to ultra-relativistic intensities of 10 21 W cm-2, including laserplasma interaction regimes important for fast ignition studies, for example HiPER, and the development of secondary sources from next generation ultra-short pulse, ultra-intense laser facilities such as Astra-Gemini and ELI. As an in situ diagnostic, spectroscopic measurements are vital to understanding fast electron beams, enabling extrapolation of results to define fast ignition inertial confinement fusion and secondary source facilities. © 2011 Elsevier B.V.Density fluctuations in the Yukawa one-component plasma: An accurate model for the dynamical structure factor
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 84:4 (2011)
Abstract:
Using numerical simulations, we investigate the equilibrium dynamics of a single-component fluid with Yukawa interaction potential. We show that, for a wide range of densities and temperatures, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. Since the Yukawa potential can describe the ion-ion interactions in a plasma, our results have significant applicability for both analyzing and interpreting the results of x-ray scattering data from high-power lasers and fourth-generation light sources. © 2011 American Physical Society.In-situ determination of dispersion and resolving power in simultaneous multiple-angle XUV spectroscopy
Journal of Instrumentation 6:10 (2011)
Abstract:
We report on the simultaneous determination of non-linear dispersion functions and resolving power of three flat-field XUV grating spectrometers. A moderate-intense short-pulse infrared laser is focused onto technical aluminum which is commonly present as part of the experimental setup. In the XUV wavelength range of 10-19 nm, the spectrometers are calibrated using Al-Mg plasma emission lines. This cross-calibration is performed in-situ in the very same setup as the actual main experiment. The results are in excellent agreement with ray-tracing simulations. We show that our method allows for precise relative and absolute calibration of three different XUV spectrometers. © 2011 IOP Publishing Ltd and SISSA.High resolution X-ray spectroscopy in fast electron transport studies
Proceedings of SPIE - The International Society for Optical Engineering 8080 (2011)