Calculations and measurements of x-ray Thomson scattering spectra in warm dense matter
AIP CONF PROC 645 (2002) 359-368
Abstract:
We present analytical expressions for the dynamic structure factor, or form factor S(k, omega), which is the quantity describing the inelastic x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation (RPA) for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy downshift and the usual Fermi-Dirac electron velocity distribution for S(k, omega) in the case of a cold degenerate plasma. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments. We show that electron density, electron temperature and ionization state can be directly inferred from such measurements. Specifically, we present as an example, use the results of experiments performed at the Vulcan laser facility at the Rutherford Appleton Laboratories (UK) on a LiH target.Three-dimensional magnetohydrodynamic numerical simulations of cloud-wind interactions
Astrophysical Journal 543:2 PART 1 (2000) 775-786
Abstract:
We present results from three-dimensional numerical simulations investigating the magnetohydrodynamics of cloud-wind interactions. The initial cloud is spherical, while the magnetic field is uniform and transverse to the cloud motion. A simplified analytical model that describes the magnetic energy evolution in front of the cloud is developed and compared with simulation results. In addition, it is found that the interaction of the cloud with a magnetized interstellar medium results in the formation of a highly structured magnetotail. The magnetic flux in the wake of the cloud organizes into flux ropes, and a reconnection current sheet is developed as field lines of opposite polarity are brought close together near the symmetry axis. At the same time magnetic pressure is strongly enhanced at the leading edge of the cloud from the stretching of the field lines that occurs there. This has an important dynamical effect on the subsequent evolution of the cloud, since some unstable modes tend to be strongly enhanced.Enhanced cloud disruption by magnetic field interaction
Astrophysical Journal 527:2 PART 2 (1999)