The infrared-radio correlation of star-forming galaxies is strongly M-star-dependent but nearly redshift-invariant since z similar to 4
Astronomy and Astrophysics European Southern Observatory 647 (2021) A123
Abstract:
Over the past decade, several works have used the ratio between total (rest 8−1000 μm) infrared and radio (rest 1.4 GHz) luminosity in star-forming galaxies (qIR), often referred to as the infrared-radio correlation (IRRC), to calibrate the radio emission as a star formation rate (SFR) indicator. Previous studies constrained the evolution of qIR with redshift, finding a mild but significant decline that is yet to be understood. Here, for the first time, we calibrate qIR as a function of both stellar mass (M⋆) and redshift, starting from an M⋆-selected sample of > 400 000 star-forming galaxies in the COSMOS field, identified via (NUV − r)/(r − J) colours, at redshifts of 0.1 < z < 4.5. Within each (M⋆,z) bin, we stacked the deepest available infrared/sub-mm and radio images. We fit the stacked IR spectral energy distributions with typical star-forming galaxy and IR-AGN templates. We then carefully removed the radio AGN candidates via a recursive approach. We find that the IRRC evolves primarily with M⋆, with more massive galaxies displaying a systematically lower qIR. A secondary, weaker dependence on redshift is also observed. The best-fit analytical expression is the following: qIR(M⋆, z) = (2.646 ± 0.024) × (1 + z)( − 0.023 ± 0.008)–(0.148 ± 0.013) × (log M⋆/M⊙ − 10). Adding the UV dust-uncorrected contribution to the IR as a proxy for the total SFR would further steepen the qIR dependence on M⋆. We interpret the apparent redshift decline reported in previous works as due to low-M⋆ galaxies being progressively under-represented at high redshift, as a consequence of binning only in redshift and using either infrared or radio-detected samples. The lower IR/radio ratios seen in more massive galaxies are well described by their higher observed SFR surface densities. Our findings highlight the fact that using radio-synchrotron emission as a proxy for SFR requires novel M⋆-dependent recipes that will enable us to convert detections from future ultra-deep radio surveys into accurate SFR measurements down to low-M⋆ galaxies with low SFR.Fast infrared variability from the black hole candidate MAXI J1535−571 and tight constraints on the modelling
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:1 (2021) 614-624
Particle acceleration in radio galaxies with flickering jets: GeV electrons to ultrahigh energy cosmic rays
ArXiv 2103.069 (2021)
Deep extragalactic visible legacy survey (DEVILS): stellar mass growth by morphological type since z=1
Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 505:1 (2021) 136-160
Abstract:
Using high-resolution Hubble Space Telescope imaging data, we perform a visual morphological classification of ∼36 000 galaxies at z < 1 in the deep extragalactic visible legacy survey/cosmological evolution survey region. As the main goal of this study, we derive the stellar mass function (SMF) and stellar mass density (SMD) sub-divided by morphological types. We find that visual morphological classification using optical imaging is increasingly difficult at z > 1 as the fraction of irregular galaxies and merger systems (when observed at rest-frame UV/blue wavelengths) dramatically increases. We determine that roughly two-thirds of the total stellar mass of the Universe today was in place by z ∼ 1. Double-component galaxies dominate the SMD at all epochs and increase in their contribution to the stellar mass budget to the present day. Elliptical galaxies are the second most dominant morphological type and increase their SMD by ∼2.5 times, while by contrast, the pure-disc population significantly decreases by ∼85 per cent. According to the evolution of both high- and low-mass ends of the SMF, we find that mergers and in situ evolution in discs are both present at z < 1, and conclude that double-component galaxies are predominantly being built by the in situ evolution in discs (apparent as the growth of the low-mass end with time), while mergers are likely responsible for the growth of ellipticals (apparent as the increase of intermediate/high-mass end).Disk, Corona, Jet Connection in the Intermediate State of MAXI J1820+070 Revealed by NICER Spectral-Timing Analysis
(2021)