The black hole transient MAXI J1348-630: evolution of the compact and transient jets during its 2019/2020 outburst

(2021)

Authors:

F Carotenuto, S Corbel, E Tremou, TD Russell, A Tzioumis, RP Fender, PA Woudt, SE Motta, JCA Miller-Jones, J Chauhan, AJ Tetarenko, GR Sivakoff, I Heywood, A Horesh, AJ van der Horst, E Koerding, KP Mooley

Disk, corona, jet connection in the intermediate state of MAXI J1820+070 revealed by NICER spectral-timing analysis

Astrophysical Journal Letters IOP Science 910:1 (2021) L3

Authors:

Jingyi Wang, Guglielmo Mastroserio, Erin Kara, Javier A Garcia, Adam Ingram, Riley Connors, Michiel van der Klis, Thomas Dauser, James F Steiner, Douglas JK Buisson, Jeroen Homan, Matteo Lucchini, Andrew C Fabian, Joe Bright, Rob Fender, Edward M Cackett, Ron A Remillard

Abstract:

We analyze five epochs of Neutron star Interior Composition Explorer (NICER) data of the black hole X-ray binary MAXI J1820+070 during the bright hard-to-soft state transition in its 2018 outburst with both reflection spectroscopy and Fourier-resolved timing analysis. We confirm the previous discovery of reverberation lags in the hard state, and find that the frequency range where the (soft) reverberation lag dominates decreases with the reverberation lag amplitude increasing during the transition, suggesting an increasing X-ray emitting region, possibly due to an expanding corona. By jointly fitting the lag-energy spectra in a number of broad frequency ranges with the reverberation model reltrans, we find the increase in reverberation lag is best described by an increase in the X-ray coronal height. This result, along with the finding that the corona contracts in the hard state, suggests a close relationship between spatial extent of the X-ray corona and the radio jet. We find the corona expansion (as probed by reverberation) precedes a radio flare by ∼5 days, which may suggest that the hard-to-soft transition is marked by the corona expanding vertically and launching a jet knot that propagates along the jet stream at relativistic velocities.

The infrared-radio correlation of star-forming galaxies is strongly M-star-dependent but nearly redshift-invariant since z similar to 4

Astronomy and Astrophysics European Southern Observatory 647 (2021) A123

Authors:

I Delvecchio, E Daddi, Mt Sargent, Matt Jarvis, D Elbaz, S Jin, D Liu, Imogen Whittam, H Algera, R Carraro, C D'Eugenio, J Delhaize, Bs Kalita, S Leslie, D Cs Molnar, M Novak, I Prandoni, V Smolcic, Y Ao, M Aravena, F Bournaud, Jd Collier, Sm Randriamampandry, Z Randriamanakoto, G Rodighiero, J Schober, Sv White, G Zamorani

Abstract:

Over the past decade, several works have used the ratio between total (rest 8−1000 μm) infrared and radio (rest 1.4 GHz) luminosity in star-forming galaxies (qIR), often referred to as the infrared-radio correlation (IRRC), to calibrate the radio emission as a star formation rate (SFR) indicator. Previous studies constrained the evolution of qIR with redshift, finding a mild but significant decline that is yet to be understood. Here, for the first time, we calibrate qIR as a function of both stellar mass (M⋆) and redshift, starting from an M⋆-selected sample of > 400 000 star-forming galaxies in the COSMOS field, identified via (NUV − r)/(r − J) colours, at redshifts of 0.1 < z < 4.5. Within each (M⋆,z) bin, we stacked the deepest available infrared/sub-mm and radio images. We fit the stacked IR spectral energy distributions with typical star-forming galaxy and IR-AGN templates. We then carefully removed the radio AGN candidates via a recursive approach. We find that the IRRC evolves primarily with M⋆, with more massive galaxies displaying a systematically lower qIR. A secondary, weaker dependence on redshift is also observed. The best-fit analytical expression is the following: qIR(M⋆, z) = (2.646 ± 0.024) × (1 + z)( − 0.023 ± 0.008)–(0.148 ± 0.013) × (log M⋆/M⊙ − 10). Adding the UV dust-uncorrected contribution to the IR as a proxy for the total SFR would further steepen the qIR dependence on M⋆. We interpret the apparent redshift decline reported in previous works as due to low-M⋆ galaxies being progressively under-represented at high redshift, as a consequence of binning only in redshift and using either infrared or radio-detected samples. The lower IR/radio ratios seen in more massive galaxies are well described by their higher observed SFR surface densities. Our findings highlight the fact that using radio-synchrotron emission as a proxy for SFR requires novel M⋆-dependent recipes that will enable us to convert detections from future ultra-deep radio surveys into accurate SFR measurements down to low-M⋆ galaxies with low SFR.

Fast infrared variability from the black hole candidate MAXI J1535−571 and tight constraints on the modelling

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:1 (2021) 614-624

Authors:

FM Vincentelli, P Casella, DM Russell, MC Baglio, A Veledina, T Maccarone, J Malzac, R Fender, K O’Brien, P Uttley

Particle acceleration in radio galaxies with flickering jets: GeV electrons to ultrahigh energy cosmic rays

ArXiv 2103.069 (2021)

Authors:

James H Matthews, Andrew M Taylor