Two years of pulsar observations with the ultra-wide-band receiver on the Parkes radio telescope
Monthly Notices of the Royal Astronomical Society Oxford University Press 502:1 (2021) 1253-1262
Abstract:
The major programme for observing young, non-recycled pulsars with the Parkes telescope has transitioned from a narrow-band system to an ultra-wide-band system capable of observing between 704 and 4032 MHz. We report here on the initial 2 yr of observations with this receiver. Results include dispersion measure (DM) and Faraday rotation measure (RM) variability with time, determined with higher precision than hitherto, flux density measurements and the discovery of several nulling and mode changing pulsars. PSR J1703-4851 is shown to be one of a small subclass of pulsars that has a weak and a strong mode which alternate rapidly in time. PSR J1114-6100 has the fourth highest |RM| of any known pulsar despite its location far from the Galactic Centre. PSR J1825-1446 shows variations in both DM and RM likely due to its motion behind a foreground supernova remnant.The Galactic center chimneys: The base of the multiphase outflow of the Milky Way
(2021)
Cross-correlating radio continuum surveys and CMB lensing: constraining redshift distributions, galaxy bias and cosmology
Monthly Notices of the Royal Astronomical Society Oxford University Press 502:2021 (2021) 876-887
Abstract:
We measure the harmonic-space auto-power spectrum of the galaxy overdensity in the LOFAR Two-metre Sky Survey (LoTSS) First Data Release and its cross correlation with the map of the lensing convergence of the cosmic microwave background (CMB) from the Planck collaboration. We report a ∼5σ detection of the cross-correlation. We show that the combination of the clustering power spectrum and CMB lensing cross-correlation allows us to place constraints on the high-redshift tail of the redshift distribution, one of the largest sources of uncertainty in the use of continuum surveys for cosmology. Our analysis shows a preference for a broader redshift tail than that predicted by the photometric redshifts contained in the LoTSS value added catalog, as expected, and more compatible with predictions from simulations and spectroscopic data. Although the ability of CMB lensing to constrain the width and tail of the redshift distribution could also be valuable for the analysis of current and future photometric weak lensing surveys, we show that its performance relies strongly on the redshift evolution of the galaxy bias. Assuming the redshift distribution predicted by the Square Kilometre Array Design simulations, we use our measurements to place constraints on the linear bias of radio galaxies and the amplitude of matter inhomogeneities σ8, finding σ8=0.69+0.14−0.21 assuming the galaxy bias scales with the inverse of the linear growth factor, and σ8=0.79+0.17−0.32 assuming a constant bias.The rapid transition from star formation to AGN-dominated rest-frame ultraviolet light at z ≃ 4
Monthly Notices of the Royal Astronomical Society Oxford University Press 502:1 (2021) 662-677
Abstract:
With the advent of deep optical-to-near-infrared extragalactic imaging on the degree scale, samples of high-redshift sources are being selected that contain both bright star-forming (SF) galaxies and faint active galactic nuclei (AGN). In this study, we investigate the transition between SF- and AGN-dominated systems at z ≃ 4 in the rest-frame ultraviolet (UV). We find a rapid transition to AGN-dominated sources brightward of MUV ≃ −23.2. The effect is observed in the rest-frame UV morphology and size–luminosity relation, where extended clumpy systems become point-source-dominated, and also in the available spectra for the sample. These results allow us to derive the rest-frame UV luminosity function (LF) for the SF- and AGN-dominated subsamples. We find the SF-dominated LF is best fit with a double power law, with a lensed Schechter function being unable to explain the existence of extremely luminous SF galaxies at MUV ≃ −23.5. If we identify AGN-dominated sources according to a point-source morphology criterion, we recover the relatively flat faint-end slope of the AGN LF determined in previous studies. If we instead separate the LF according to the current spectroscopic AGN fraction, we find a steeper faint-end slope of α = −1.83 ± 0.11. Using a simple model to predict the rest-frame AGN LF from the z = 4 galaxy LF, we find that the increasing impact of host galaxy light on the measured morphology of faint AGN can explain our observations.Bow-shocks, nova shells, disc winds and tilted discs: the Nova-Like V341 Ara Has It All
Monthly Notices of the Royal Astronomical Society Oxford University Press 501:2 (2021) 1951-1969