Resolving the disc-halo degeneracy II: NGC 6946

Monthly Notices of the Royal Astronomical Society Oxford University Press 500:30 July 2020 (2020) 3579-3593

Authors:

S Aniyan, Anastasia Ponomareva, Kc Freeman, M Arnaboldi, Oe Gerhard, L Coccato, K Kuijken, M Merrifield

Abstract:

The mass-to-light ratio (M/L) is a key parameter in decomposing galactic rotation curves into contributions from the baryonic components and the dark halo of a galaxy. One direct observational method to determine the disc M/L is by calculating the surface mass density of the disc from the stellar vertical velocity dispersion and the scale height of the disc. Usually, the scale height is obtained from near-IR studies of edge-on galaxies and pertains to the older, kinematically hotter stars in the disc, while the vertical velocity dispersion of stars is measured in the optical band and refers to stars of all ages (up to ∼ 10 Gyr) and velocity dispersions. This mismatch between the scale height and the velocity dispersion can lead to underestimates of the disc surface density and a misleading conclusion of the sub-maximality of galaxy discs. In this paper we present the study of the stellar velocity dispersion of the disc galaxy NGC 6946 using integrated star light and individual planetary nebulae as dynamical tracers. We demonstrate the presence of two kinematically distinct populations of tracers which contribute to the total stellar velocity dispersion. Thus, we are able to use the dispersion and the scale height of the same dynamical population to derive the surface mass density of the disc over a radial extent. We find the disc of NGC 6946 to be closer to maximal with the baryonic component contributing most of the radial gravitational field in the inner parts of the galaxy (⁠Vmax(bar)=0.76(±0.14)Vmax⁠).

Rapid compact jet quenching in the Galactic black hole candidate X-ray binary MAXI J1535−571

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 498:4 (2020) 5772-5785

Authors:

TD Russell, M Lucchini, AJ Tetarenko, JCA Miller-Jones, GR Sivakoff, F Krauß, W Mulaudzi, MC Baglio, DM Russell, D Altamirano, C Ceccobello, S Corbel, N Degenaar, J van den Eijnden, R Fender, S Heinz, KII Koljonen, D Maitra, S Markoff, S Migliari, AS Parikh, RM Plotkin, M Rupen, C Sarazin, R Soria, R Wijnands

Chandra Monitoring of the J1809–1917 Pulsar Wind Nebula and Its Field

The Astrophysical Journal American Astronomical Society 901:2 (2020) 157

Authors:

Noel Klingler, Hui Yang, Jeremy Hare, Oleg Kargaltsev, George G Pavlov, Bettina Posselt

Measuring the distance to the black hole candidate X-ray binary MAXI J1348-630 using HI absorption

(2020)

Authors:

J Chauhan, JCA Miller-Jones, W Raja, JR Allison, PFL Jacob, GE Anderson, F Carotenuto, S Corbel, R Fender, A Hotan, M Whiting, PA Woudt, B Koribalski, E Mahony

Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST)

Monthly Notices of the Royal Astronomical Society Oxford University Press 499:2 (2020) 1587-1606

Authors:

Sj Schmidt, Ai Malz, Jyh Soo, Ia Almosallam, M Brescia, S Cavuoti, J Cohen-Tanugi, Aj Connolly, J DeRose, Pe Freeman, Ml Graham, Kg Iyer, Matthew Jarvis, Jb Kalmbach, E Kovacs, Ab Lee, G Longo, Cb Morrison, Ja Newman, E Nourbakhsh, E Nuss, T Pospisil, H Tranin, Rh Wechsler, R Zhou, R Izbicki, LSST Dark Energy Sci Collaboration

Abstract:

Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing 12 photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time Dark Energy Science Collaboration. By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/underbreadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performance metrics.