The relation between the diffuse X-ray luminosity and the radio power of the central AGN in galaxy groups

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 497:2 (2020) 2163-2174

Authors:

T Pasini, M Brueggen, F de Gasperin, L Birzan, E O'Sullivan, A Finoguenov, Imogen Whittam, Ian Heywood, Matt Jarvis, M Gitti, F Brighenti, Jd Collier, G Gozaliasl

Abstract:

Our understanding of how active galactic nucleus feedback operates in galaxy clusters has improved in recent years owing to large efforts in multiwavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy groups, which have shallower gravitational potentials. In this work, using very deep Very Large Array and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the intra-cluster medium could be less suppressed by active galactic nucleus heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.

Possible periodic activity in the repeating FRB 121102

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 495:4 (2020) 3551-3558

Authors:

KM Rajwade, MB Mickaliger, BW Stappers, V Morello, D Agarwal, CG Bassa, RP Breton, M Caleb, A Karastergiou, EF Keane, DR Lorimer

International Coordination of Multi-Messenger Transient Observations in the 2020s and Beyond: Kavli-IAU White Paper

(2020)

Authors:

S Bradley Cenko, Patricia A Whitelock, Laura Cadonati, Valerie Connaughton, Roger Davies, Rob Fender, Paul J Groot, Mansi M Kasliwal, Tara Murphy, Samaya Nissanke, Alberto Sesana, Shigeru Yoshida, Binbin Zhang

Detection of two bright radio bursts from magnetar SGR 1935+2154

ArXiv 2007.05101 (2020)

Authors:

F Kirsten, M Snelders, M Jenkins, K Nimmo, J van den Eijnden, J Hessels, M Gawronski, J Yang

Initial results from a realtime FRB search with the GBT

Monthly Notices of the Royal Astronomical Society Oxford University Press 497:1 (2020) 352-360

Authors:

Devansh Agarwal, Dr Lorimer, MP Surnis, X Pei, A Karastergiou, G Golpayegani, D Werthimer, J Cobb, MA McLaughlin, S White, W Armour, DHE MacMahon, APV Siemion, G Foster

Abstract:

We present the data analysis pipeline, commissioning observations, and initial results from the GREENBURST fast radio burst (FRB) detection system on the Robert C. Byrd Green Bank Telescope (GBT) previously described by Surnis et al., which uses the 21-cm receiver observing commensally with other projects. The pipeline makes use of a state-of-the-art deep learning classifier to winnow down the very large number of false-positive single-pulse candidates that mostly result from radio frequency interference. In our observations, totalling 156.5 d so far, we have detected individual pulses from 20 known radio pulsars that provide an excellent verification of the system performance. We also demonstrate, through blind injection analyses, that our pipeline is complete down to a signal-to-noise threshold of 12. Depending on the observing mode, this translates into peak flux sensitivities in the range 0.14–0.89 Jy. Although no FRBs have been detected to date, we have used our results to update the analysis of Lawrence et al. to constrain the FRB all-sky rate to be 1150+200−180 per day above a peak flux density of 1 Jy. We also constrain the source count index α = 0.84 ± 0.06, which indicates that the source count distribution is substantially flatter than expected from a Euclidean distribution of standard candles (where α = 1.5). We discuss this result in the context of the FRB redshift and luminosity distributions. Finally, we make predictions for detection rates with GREENBURST, as well as other ongoing and planned FRB experiments.