Cosmological 3D H I gas map with HETDEX Ly alpha emitters and eBOSS QSOs at z=2: IGM-Galaxy/QSO connection and a similar to 40 Mpc scale giant H ii bubble candidate
Astrophysical Journal IOP Publishing 903 (2020) 24
Abstract:
We present cosmological (30−400 Mpc) distributions of neutral hydrogen (H i) in the intergalactic medium (IGM) traced by Lyα emitters (LAEs) and QSOs at z = 2.1–2.5, selected with the data of the ongoing Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the eBOSS survey. Motivated by a previous study of Mukae et al., we investigate spatial correlations of LAEs and QSOs with H i tomography maps reconstructed from H i Lyα forest absorption in the spectra of background galaxies and QSOs obtained by the CLAMATO survey and this study, respectively. In the cosmological volume far from QSOs, we find that LAEs reside in regions of strong H i absorption, i.e., H i rich, which is consistent with results of previous galaxy−background QSO pair studies. Moreover, there is an anisotropy in the H i distribution plot of transverse and line-of-sight distances; on average the H i absorption peak is blueshifted by ~200 km s−1 from the LAE Lyα redshift, reproducing the known average velocity offset between the Lyα emission redshift and the galaxy systemic redshift. We have identified a ~40 Mpc scale volume of H i underdensity that is a candidate for a giant H ii bubble, where six QSOs and an LAE overdensity exist at $\left\langle z\right\rangle =2.16$. The coincidence of the QSO and LAE overdensities with the H i underdensity indicates that the ionizing photon radiation of the QSOs has created a highly ionized volume of multiple proximity zones in a matter overdensity. Our results suggest an evolutionary picture where H i gas in an overdensity of galaxies becomes highly photoionized when QSOs emerge in the galaxies.Probing jet launching in neutron star X-ray binaries: the variable and polarized jet of SAX J1808.4-3658
(2020)
Eclipses of jets and discs of X-ray binaries as a powerful tool for understanding jet physics and binary parameters
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 499:1 (2020) 957-973
The XXL Survey: XLII. Detection and characterisation of the galaxy population of distant galaxy clusters in the XXL-N/VIDEO field: A tale of variety
Astronomy and Astrophysics EDP Sciences 642 (2020) A124
Abstract:
Context. Distant galaxy clusters provide an effective laboratory in which to study galaxy evolution in dense environments and at early cosmic times. Aims. We aim to identify distant galaxy clusters as extended X-ray sources that are coincident with overdensities of characteristically bright galaxies. Methods. We used optical and near-infrared data from the Hyper Suprime-Cam and VISTA Deep Extragalactic Observations (VIDEO) surveys to identify distant galaxy clusters as overdensities of bright, zphot = 0:8 galaxies associated with extended X-ray sources detected in the ultimate XMM extragalactic survey (XXL). Results. We identify a sample of 35 candidate clusters at 0:80 = z = 1:93 from an approximately 4.5 deg2 sky area. This sample includes 15 newly discovered candidate clusters, ten previously detected but unconfirmed clusters, and ten spectroscopically confirmed clusters. Although these clusters host galaxy populations that display a wide variety of quenching levels, they exhibit well-defined relations between quenching, cluster-centric distance, and galaxy luminosity. The brightest cluster galaxies (BCGs) within our sample display colours that are consistent with a bimodal population composed of an old and red sub-sample together with a bluer, more diverse sub-sample. Conclusions The relation between galaxy masses and quenching seem to already be in place at z ~ 1, although there is no significant variation in the quenching fraction with the cluster-centric radius. The BCG bimodality might be explained by the presence of a younger stellar component in some BCGs, but additional data are needed to confirm this scenario.The infrared-radio correlation of star-forming galaxies is strongly M$_{\star}$-dependent but nearly redshift-invariant since z$\sim$4
ArXiv 2010.0551 (2020)