The Long-lived Broadband Afterglow of Short Gamma-Ray Burst 231117A and the Growing Radio-detected Short Gamma-Ray Burst Population

The Astrophysical Journal American Astronomical Society 982:1 (2025) 42

Authors:

Genevieve Schroeder, Wen-fai Fong, Charles D Kilpatrick, Alicia Rouco Escorial, Tanmoy Laskar, Anya E Nugent, Jillian Rastinejad, Kate D Alexander, Edo Berger, Thomas G Brink, Ryan Chornock, Clecio R de Bom, Yuxin Dong, Tarraneh Eftekhari, Alexei V Filippenko, Celeste Fuentes-Carvajal, Wynn V Jacobson-Galán, Matthew Malkan, Raffaella Margutti, Jeniveve Pearson, Lauren Rhodes, Ricardo Salinas, David J Sand, Luidhy Santana-Silva

Abstract:

We present multiwavelength observations of the Swift short γ-ray burst GRB 231117A, localized to an underlying galaxy at redshift z = 0.257 at a small projected offset (∼2 kpc). We uncover long-lived X-ray Chandra X-ray Observatory and radio/millimeter (VLA, MeerKAT, and ALMA) afterglow emission, detected to ∼37 days and ∼20 days (rest frame), respectively. We measure a wide jet (∼10 .° 4) and relatively high circumburst density (∼0.07 cm−3) compared to the short GRB population. Our data cannot be easily fit with a standard forward shock model, but they are generally well fit with the incorporation of a refreshed forward shock and a reverse shock at <1 day. We incorporate GRB 231117A into a larger sample of 132 X-ray detected events, 71 of which were radio-observed (17 cm-band detections), for a systematic study of the distributions of redshifts, jet and afterglow properties, galactocentric offsets, and local environments of events with and without detected radio afterglows. Compared to the entire short GRB population, the majority of radio-detected GRBs are at relatively low redshifts (z < 0.6) and have high circumburst densities (>10−2 cm−3), consistent with their smaller (<8 kpc) projected galactocentric offsets. We additionally find that 70% of short GRBs with opening angle measurements were radio-detected, indicating the importance of radio afterglows in jet measurements, especially in the cases of wide (>10°) jets where observational evidence of collimation may only be detectable at radio wavelengths. Owing to improved observing strategies and the emergence of sensitive radio facilities, the number of radio-detected short GRBs has quadrupled in the past decade.

The ubiquity of variable radio emission and spin-down rates in pulsars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf427

Authors:

ME Lower, A Karastergiou, S Johnston, PR Brook, S Dai, M Kerr, RN Manchester, LS Oswald, RM Shannon, C Sobey, P Weltevrede

Anomaly Detection and Radio-frequency Interference Classification with Unsupervised Learning in Narrowband Radio Technosignature Searches

Astronomical Journal American Astronomical Society 169:4 (2025) 206

Authors:

Ben Jacobson-Bell, Steve Croft, Carmen Choza, Alex Andersson, Daniel Bautista, Vishal Gajjar, Matthew Lebofsky, David HE MacMahon, Caleb Painter, Andrew PV Siemion

Abstract:

The search for radio technosignatures is an anomaly detection problem: Candidate signals represent needles of interest in the proverbial haystack of radio-frequency interference (RFI). Current search frameworks find an enormity of false-positive signals, especially in large surveys, requiring manual follow-up to a sometimes prohibitive degree. Unsupervised learning provides an algorithmic way to winnow the most anomalous signals from the chaff, as well as group together RFI signals that bear morphological similarities. We present Grouping Low-frequency Observations By Unsupervised Learning After Reduction (GLOBULAR) clustering, a signal processing method that uses hierarchical density-based spatial clustering of applications with noise (or HDBSCAN) to reduce the false-positive rate and isolate outlier signals for further analysis. When combined with a standard narrowband signal detection and spatial filtering pipeline, such as turboSETI, GLOBULAR clustering offers significant improvements in the false-positive rate over the standard pipeline alone, suggesting dramatic potential for the amelioration of manual follow-up requirements for future large surveys. By removing RFI signals in regions of high spectral occupancy, GLOBULAR clustering may also enable the detection of signals missed by the standard pipeline. We benchmark our method against the C. Choza et al. turboSETI-only search of 97 nearby galaxies at the L band, demonstrating a false-positive hit reduction rate of 93.1% and a false-positive event reduction rate of 99.3%.

Blast waves and reverse shocks: from ultra-relativistic GRBs to moderately relativistic X-ray binaries

(2025)

Authors:

James H Matthews, Alex J Cooper, Lauren Rhodes, Katherine Savard, Rob Fender, Francesco Carotenuto, Fraser J Cowie, Emma L Elley, Joe Bright, Andrew K Hughes, Sara E Motta

Joint Radiative and Kinematic Modelling of X-ray Binary Ejecta: Energy Estimate and Reverse Shock Detection

(2025)

Authors:

AJ Cooper, JH Matthews, F Carotenuto, R Fender, GP Lamb, TD Russell, N Sarin, K Savard