The Observed Phase Space of Mass-loss History from Massive Stars Based on Radio Observations of a Large Supernova Sample

The Astrophysical Journal American Astronomical Society 979:2 (2025) 189

Authors:

Itai Sfaradi, Assaf Horesh, Rob Fender, Lauren Rhodes, Joe Bright, David Williams-Baldwin, Dave A Green

Abstract:

In this work, we study the circumstellar material (CSM) around massive stars, and the mass-loss rates depositing this CSM, using a large sample of radio observations of 325 core-collapse supernovae (CCSNe; only ~22% of them being detected). This sample comprises both archival data and our new observations of 99 CCSNe conducted with the AMI-LA radio array in a systematic approach devised to constrain the mass loss at different stages of stellar evolution. In the supernova (SN)–CSM interaction model, observing the peak of the radio emission of an SN provides the CSM density at a given radius (and therefore the mass-loss rate that deposited this CSM). On the other hand, limits on the radio emission, and/or on the peak of the radio emission provide a region in the CSM phase space that can be ruled out. Our analysis shows a discrepancy between the values of mass-loss rates derived from radio-detected and radio-nondetected SNe. Furthermore, we rule out mass-loss rates in the range of 2 × 10−6–10−4 M⊙ yr−1 for different epochs during the last 1000 yr before the explosion (assuming wind velocity of 10 km s−1) for the progenitors of ~80% of the Type II supernovae (SNe II) in our sample. In addition, we rule out the ranges of mass-loss rates suggested for red supergiants for ~50% of the progenitors of SNe II in our sample. We emphasize here that these results take a step forward in constraining mass loss in winds from a statistical point of view.

Type I X-ray Bursts Reflected During the X-ray Eclipses of EXO 0748-676

(2025)

Authors:

Amy H Knight, Jakob van den Eijnden, Adam Ingram, James H Matthews, Sara E Motta, Matthew Middleton, Giulio C Mancuso, Douglas JK Buisson, Diego Altamirano, Rob Fender, Timothy P Roberts

The observed phase space of mass-loss history from massive stars based on radio observations of a large supernova sample

(2025)

Authors:

Itai Sfaradi, Assaf Horesh, Rob Fender, Lauren Rhodes, Joe Bright, David Williams-Baldwin, Dave A Green

State-dependent signatures of jets and winds in the optical and infrared spectrum of the black hole transient GX 339$-$4

(2025)

Authors:

A Ambrifi, D Mata Sánchez, T Muñoz-Darias, J Sánchez-Sierras, M Armas Padilla, MC Baglio, J Casares, JM Corral-Santana, VA Cúneo, RP Fender, G Ponti, DM Russell, M Shidatsu, D Steeghs, MAP Torres, Y Ueda, F Vincentelli

Late-time Radio Brightening and Emergence of a Radio Jet in the Changing-look AGN 1ES 1927+654

The Astrophysical Journal Letters American Astronomical Society 979:1 (2025) L2

Authors:

Eileen T Meyer, Sibasish Laha, Onic I Shuvo, Agniva Roychowdhury, David A Green, Lauren Rhodes, Amelia M Hankla, Alexander Philippov, Rostom Mbarek, Ari laor, Mitchell C Begelman, Dev R Sadaula, Ritesh Ghosh, Gabriele Bruni, Francesca Panessa, Matteo Guainazzi, Ehud Behar, Megan Masterson, Haocheng Zhang, Xiaolong Yang, Mark A Gurwell, Garrett K Keating, David Williams-Baldwin, Justin D Bray

Abstract:

We present multifrequency (5–345 GHz) and multiresolution radio observations of 1ES 1927+654, widely considered one of the most unusual and extreme changing-look active galactic nuclei (CL-AGNs). The source was first designated a CL-AGN after an optical outburst in late 2017 and has since displayed considerable changes in X-ray emission, including the destruction and rebuilding of the X-ray corona in 2019–2020. Radio observations prior to 2023 show a faint and compact radio source typical of a radio-quiet AGN. Starting in 2023 February, 1ES 1927+654 began exhibiting a radio flare with a steep exponential rise, reaching a peak 60 times previous flux levels, and has maintained this higher level of radio emission for over a year to date. The 5–23 GHz spectrum is broadly similar to gigahertz-peaked radio sources, which are understood to be young radio jets less than ∼1000 yr old. Recent high-resolution Very Long Baseline Array observations at 23.5 GHz now show resolved extensions on either side of the core, with a separation of ∼0.15 pc, consistent with a new and mildly relativistic bipolar outflow. A steady increase in the soft X-ray band (0.3–2 keV) concurrent with the radio may be consistent with jet-driven shocked gas, though further observations are needed to test alternate scenarios. This source joins a growing number of CL-AGNs and tidal disruption events that show late-time radio activity, years after the initial outburst.