IRIS: A Bayesian Approach for Image Reconstruction in Radio Interferometry with expressive Score-Based priors

ArXiv 2501.02473 (2025)

Authors:

Noé Dia, MJ Yantovski-Barth, Alexandre Adam, Micah Bowles, Laurence Perreault-Levasseur, Yashar Hezaveh, Anna Scaife

Long-term optical variations in Swift J1858.6–0814: evidence for ablation and comparisons to radio properties

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 536:4 (2025) 3421-3430

Authors:

L Rhodes, DM Russell, P Saikia, K Alabarta, J van den Eijnden, AH Knight, MC Baglio, F Lewis

X-Ray and Optical Polarization Aligned with the Radio Jet Ejecta in GX 339–4

The Astrophysical Journal Letters American Astronomical Society 978:2 (2025) L19

Authors:

G Mastroserio, B De Marco, MC Baglio, F Carotenuto, S Fabiani, TD Russell, F Capitanio, Y Cavecchi, S Motta, DM Russell, M Dovčiak, M Del Santo, K Alabarta, A Ambrifi, S Campana, P Casella, S Covino, G Illiano, E Kara, EV Lai, G Lodato, A Manca, I Mariani, A Marino

Abstract:

We present the first X-ray polarization measurements of GX 339–4. IXPE observed this source twice during its 2023–2024 outburst, once in the soft-intermediate state and again during a soft state. The observation taken during the intermediate state shows a significant (4σ) polarization degree PX = 1.3% ± 0.3% and polarization angle θX = −74° ± 7° only in the 3–8 keV band. FORS2 at the Very Large Telescope observed the source simultaneously, detecting optical polarization in the B, V, R, and I bands (between ∼0.1% and ∼0.7%), all roughly aligned with the X-ray polarization. We also detect a discrete jet knot from radio observations with the Australia Telescope Compact Array taken later in time; this knot would have been ejected from the system around the same time as the hard-to-soft X-ray state transition, and a bright radio flare occurred ∼3 months earlier. The proper motion of the jet knot provides a direct measurement of the jet orientation angle on the plane of the sky at the time of the ejection. We find that both the X-ray and optical polarization angles are aligned with the direction of the ballistic jet.

Peculiar radio-bright behaviour of the Galactic black hole transient 4U 1543−47 in the 2021–2023 outburst

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 538:1 (2025) l43-l49

Authors:

X Zhang, W Yu, F Carotenuto, SE Motta, R Fender, JCA Miller-Jones, TD Russell, A Bahramian, P Woudt, AK Hughes, GR Sivakoff

Cross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra

Publications of the Astronomical Society of Australia (2025)

Authors:

K Tanidis, J Asorey, CS Saraf, CL Hale, B Bahr-Kalus, D Parkinson, S Camera, RP Norris, AM Hopkins, M Bilicki, N Gupta

Abstract:

We measured the harmonic-space power spectrum of galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from ℓ = 2 to 500. We applied two flux density cuts at 0.18 and 0.4mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18mJy cut to deviate for ℓ ≥ 250 due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at ∼5.5σ, irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias b(z) = bg and a constant amplitude galaxy bias b(z) = bg/D(z). By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at 0.18mJy (0.4mJy) with bg = 2.32-0.33+0.41 (2.18-0.25+0.17) and a constant amplitude bias with bg = 1.72-0.21+0.31 (1.78-0.15+0.22). When σ8 is a free parameter for the same models at 0.18mJy (0.4mJy) with the constant model we found σ8 = 0.68-0.14+0.16 (0.82 ±0.10), while with the constant amplitude model we measured σ8 = 0.61-0.20+0.18 (0.78-0.09+0.11), respectively. Our results agree at 1σ with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.