Steady jets from radiatively efficient hard states in GRS1915+105

Astronomy and Astrophysics 524:5 (2010)

Authors:

A Rushton, R Spencer, R Fender, G Pooley

Abstract:

Recent studies of different X-ray binaries (XRBs) have shown a clear correlation between the radio and X-ray emission. We present evidence of a close relationship found between the radio and X-ray emission at different epochs for GRS 1915+105, using observations from the Ryle Telescope and Rossi X-ray Timing Explorer satellite. The strongest correlation was found during the hard state (also known as the "plateau" state), where a steady AU-scale jet is known to exist. Both the radio and X-ray emission were found to decay from the start of most plateau states, with the radio emission decaying faster. An empirical relationship of was then fitted to data taken only during the plateau state, resulting in a power-law index of ξ ~ 1.7 ± 0.3, which is significantly higher than in other black hole XRBs in a similar state. An advection-flow model was then fitted to this relationship and compared to the universal XRB relationship as described by Gallo et al. (2003, MNRAS, 344, 60). We conclude that either (I) the accretion disk in this source is radiatively efficient, even during the continuous outflow of a compact jet, which could also suggest a universal turn-over from radiatively inefficient to efficient for all stellar-mass black holes at a critical mass accretion rate (M c≈1018.5 g/s); or (II) the X-rays in the plateau state are dominated by emission from the base of the jet and not the accretion disk (e.g. via inverse Compton scattering from the outflow). © 2010 ESO.

On the nature of the "radio quiet" black hole binaries

(2010)

Authors:

Paolo Soleri, Rob Fender

Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

M Balcells, CR Benn, D Carter, GB Dalton, SC Trager, S Feltzing, MAW Verheijen, M Jarvis, W Percival, DC Abrams, T Agocs, AGA Brown, D Cano, C Evans, A Helmi, IJ Lewis, R McLure, RF Peletier, I Pérez-Fournon, RM Sharples, IAJ Tosh, I Trujillo, N Walton, KB Westhall

Abstract:

Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector (Agocs et al, this conf.) that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT. © 2010 Copyright SPIE - The International Society for Optical Engineering.

HARMONI: A single-field wide-band integral-field spectrograph for the European ELT

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

N Thatte, M Tecza, F Clarke, RL Davies, A Remillieux, R Bacon, D Lunney, S Arribas, E Mediavilla, F Gago, N Bezawada, P Ferruit, A Fragoso, D Freeman, J Fuentes, T Fusco, A Gallie, A Garcia, T Goodsall, F Gracia, A Jarno, J Kosmalski, J Lynn, S McLay, D Montgomery, A Pecontal, H Schnetler, H Smith, D Sosa, G Battaglia, N Bowles, L Colina, E Emsellem, A Garcia-Perez, S Gladysz, I Hook, P Irwin, M Jarvis, R Kennicutt, A Levan, A Longmore, J Magorrian, M McCaughrean, L Origlia, R Rebolo, D Rigopoulou, S Ryan, M Swinbank, N Tanvir, E Tolstoy, A Verma

Abstract:

We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectroscopic requirement. It is a work-horse instrument, with four different spatial scales, ranging from seeing to diffraction-limited, and spectral resolving powers of 4000, 10000 & 20000 covering the 0.47 to 2.45 μm wavelength range. It is optimally suited to carry out a wide range of observing programs, focusing on detailed, spatially resolved studies of extended objects to unravel their morphology, kinematics and chemical composition, whilst also enabling ultra-sensitive observations of point sources. We present a synopsis of the key science cases motivating the instrument, the top level specifications, a description of the opto-mechanical concept, operation and calibration plan, and image quality and throughput budgets. Issues of expected performance, complementarity and synergies, as well as simulated observations are presented elsewhere in these proceedings[1]. © 2010 Copyright SPIE - The International Society for Optical Engineering.

The detection of a population of submillimeter-bright, strongly lensed galaxies.

Science 330:6005 (2010) 800-804

Authors:

Mattia Negrello, R Hopwood, G De Zotti, A Cooray, A Verma, J Bock, DT Frayer, MA Gurwell, A Omont, R Neri, H Dannerbauer, LL Leeuw, E Barton, J Cooke, S Kim, E da Cunha, G Rodighiero, P Cox, DG Bonfield, MJ Jarvis, S Serjeant, RJ Ivison, S Dye, I Aretxaga, DH Hughes, E Ibar, F Bertoldi, I Valtchanov, S Eales, L Dunne, SP Driver, R Auld, S Buttiglione, A Cava, CA Grady, DL Clements, A Dariush, J Fritz, D Hill, JB Hornbeck, L Kelvin, G Lagache, M Lopez-Caniego, J Gonzalez-Nuevo, S Maddox, E Pascale, M Pohlen, EE Rigby, A Robotham, C Simpson, DJB Smith, P Temi, MA Thompson, BE Woodgate, DG York, JE Aguirre, A Beelen, A Blain, AJ Baker, M Birkinshaw, R Blundell, CM Bradford, D Burgarella, L Danese, JS Dunlop, S Fleuren, J Glenn, AI Harris, J Kamenetzky, RE Lupu, RJ Maddalena, BF Madore, PR Maloney, H Matsuhara, MJ Michaowski, EJ Murphy, BJ Naylor, H Nguyen, C Popescu, S Rawlings, D Rigopoulou, D Scott, KS Scott, M Seibert, I Smail, RJ Tuffs, JD Vieira, PP van der Werf, J Zmuidzinas

Abstract:

Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.