The LOFAR Tied-Array All-Sky Survey: Timing of 35 radio pulsars and an overview of the properties of the LOFAR pulsar discoveries

(2022)

Authors:

E van der Wateren, CG Bassa, S Cooper, J-M Grießmeier, BW Stappers, JWT Hessels, VI Kondratiev, D Michilli, CM Tan, C Tiburzi, P Weltevrede, A-S Bak Nielsen, TD Carozzi, B Ciardi, I Cognard, R-J Dettmar, A Karastergiou, M Kramer, J Künsemöller, S Osłowski, M Serylak, C Vocks, O Wucknitz

MIGHTEE: deep 1.4 GHz source counts and the sky temperature contribution of star forming galaxies and active galactic nuclei

Monthly Notices of the Royal Astronomical Society Oxford University Press 520:2 (2022) 2668-2691

Authors:

Cl Hale, Ih Whittam, Mj Jarvis, Pn Best, Nl Thomas, I Heywood, M Prescott, N Adams, J Afonso, Fangxia An, Raa Bowler, Jd Collier, Rhw Cook, R Davé, Bs Frank, M Glowacki, Pw Hatfield, S Kolwa, Cc Lovell, N Maddox, L Marchetti, Lk Morabito, E Murphy, I Prandoni, Z Randriamanakoto, Ar Taylor

Abstract:

We present deep 1.4 GHz source counts from ∼5 deg2 of the continuum Early Science data release of the MeerKAT International Gigahertz Tiered Extragalactic Exploration (MIGHTEE) survey down to S1.4GHz ∼15 μJy. Using observations over two extragalactic fields (COSMOS and XMM-LSS), we provide a comprehensive investigation into correcting the incompleteness of the raw source counts within the survey to understand the true underlying source count population. We use a variety of simulations that account for: errors in source detection and characterisation, clustering, and variations in the assumed source model used to simulate sources within the field and characterise source count incompleteness. We present these deep source count distributions and use them to investigate the contribution of extragalactic sources to the sky background temperature at 1.4 GHz using a relatively large sky area. We then use the wealth of ancillary data covering a subset of the COSMOS field to investigate the specific contributions from both active galactic nuclei (AGN) and star forming galaxies (SFGs) to the source counts and sky background temperature. We find, similar to previous deep studies, that we are unable to reconcile the sky temperature observed by the ARCADE 2 experiment. We show that AGN provide the majority contribution to the sky temperature contribution from radio sources, but the relative contribution of SFGs rises sharply below 1 mJy, reaching an approximate 15-25 per cent contribution to the total sky background temperature (Tb ∼100 mK) at ∼15 μJy.

The Thousand-Pulsar-Array programme on MeerKAT -- X. Scintillation arcs of 107 pulsars

(2022)

Authors:

RA Main, A Parthasarathy, S Johnston, A Karastergiou, A Basu, AD Cameron, MJ Keith, LS Oswald, B Posselt, DJ Reardon, X Song, P Weltevrede

WALLABY Pilot Survey: Public release of HI data for almost 600 galaxies from phase 1 of ASKAP pilot observations

ArXiv 2211.07094 (2022)

Authors:

T Westmeier, N Deg, K Spekkens, TN Reynolds, AX Shen, S Gaudet, S Goliath, MT Huynh, P Venkataraman, X Lin, T O'Beirne, B Catinella, L Cortese, H Dénes, A Elagali, B-Q For, GIG Józsa, C Howlett, JM van der Hulst, RJ Jurek, P Kamphuis, VA Kilborn, D Kleiner, BS Koribalski, K Lee-Waddell, C Murugeshan, J Rhee, P Serra, L Shao, L Staveley-Smith, J Wang, OI Wong, MA Zwaan, JR Allison, CS Anderson, Lewis Ball, DC-J Bock, D Brodrick, JD Bunton, FR Cooray, N Gupta, DB Hayman, EK Mahony, VA Moss, A Ng, SE Pearce, W Raja, DN Roxby, MA Voronkov, KA Warhurst, HM Courtois, K Said

The Thousand Pulsar Array programme on MeerKAT – X. Scintillation arcs of 107 pulsars

Monthly Notices of the Royal Astronomical Society Oxford University Press 518:1 (2022) 1086-1097

Authors:

Ra Main, A Parthasarathy, S Johnston, A Karastergiou, A Basu, Ad Cameron, Mj Keith, Lucy Oswald, B Posselt, Dj Reardon, X Song, P Weltevrede

Abstract:

We present the detection of 107 pulsars with interstellar scintillation arcs at 856–1712 MHz, observed with the MeerKAT Thousand Pulsar Array Programme. Scintillation arcs appear to be ubiquitous in clean, high S/N observations, their detection mainly limited by short observing durations and coarse frequency channel resolution. This led the survey to be sensitive to nearby, lightly scattered pulsars with high effective velocity – from a large proper motion, a screen nearby the pulsar, or a screen near the Earth. We measure the arc curvatures in all of our sources, which can be used to give an estimate of screen distances in pulsars with known proper motion, or an estimate of the proper motion. The short scintillation time-scale in J1731−4744 implies a scattering screen within 12 pc of the source, strongly suggesting the association between this pulsar and the supernova remnant RCW 114. We measure multiple parabolic arcs of five pulsars, all of which are weakly scintillating with high proper motion. Additionally, several sources show hints of inverted arclets suggesting scattering from anisotropic screens. Building on this work, further targeted MeerKAT observations of many of these pulsars will improve understanding of our local scattering environment and the origins of scintillation; annual scintillation curves would lead to robust screen distance measurements, and the evolution of arclets in time and frequency can constrain models of scintillation.