MIGHTEE-Hi: evolution of hi scaling relations of star-forming galaxies at z < 0.5* * released on July 29, 2022
Abstract:
We present the first measurements of H i galaxy scaling relations from a blind survey at z > 0.15. We perform spectral stacking of 9023 spectra of star-forming galaxies undetected in H i at 0.23 < z < 0.49, extracted from MIGHTEE-H i Early Science data cubes, acquired with the MeerKAT radio telescope. We stack galaxies in bins of galaxy properties (stellar mass M *, star formation rateSFR, and specific star formation rate sSFR, with sSFR ≡ M */SFR), obtaining ≳5σ detections in most cases, the strongest H i-stacking detections to date in this redshift range. With these detections, we are able to measure scaling relations in the probed redshift interval, finding evidence for a moderate evolution from the median redshift of our sample z med ∼ 0.37 to z ∼ 0. In particular, low-M * galaxies ( log 10 ( M * / M ⊙ ) ∼ 9 ) experience a strong H i depletion (∼0.5 dex in log 10 ( M H I / M ⊙ ) ), while massive galaxies ( log 10 ( M * / M ⊙ ) ∼ 11 ) keep their H i mass nearly unchanged. When looking at the star formation activity, highly star-forming galaxies evolve significantly in M H I (f H I, where f H I ≡ M H I/M *) at fixed SFR (sSFR), while at the lowest probed SFR (sSFR) the scaling relations show no evolution. These findings suggest a scenario in which low-M * galaxies have experienced a strong H i depletion during the last ∼5 Gyr, while massive galaxies have undergone a significant H i replenishment through some accretion mechanism, possibly minor mergers. Interestingly, our results are in good agreement with the predictions of the simba simulation. We conclude that this work sets novel important observational constraints on galaxy scaling relations.Upgraded GMRT survey for pulsars in globular clusters: I. Discovery of a millisecond binary pulsar in NGC 6652
Abstract:
Context. Globular clusters (GCs) contain a unique pulsar population, with many exotic systems that can form only in their dense stellar environments. Such systems are potentially very interesting for new tests of gravity theories and neutron-star mass measurements.
Aims. The leap in sensitivity of the upgraded Giant Metrewave Radio Telescope (uGMRT) in India, especially at low radio frequencies (< 1 GHz), motivated a new search for radio pulsars in a group of eight southern GCs. We aim to image these clusters in order to have independent measurements of the radio fluxes of known pulsars and the identification of bright radio sources that could be pulsars missed by pulsation search pipelines due to their inherent limitations.
Methods. The observations were conducted at 650 MHz (Band 4 receivers) on Terzan 5, NGC 6441, NGC 6440, and NGC 6544, and at 400 MHz (Band 3 receivers) on NGC 6652, NGC 6539, NGC 1851, and M 30. Segmented acceleration and jerk searches were performed on the data. Simultaneously, we obtained interferometric data on these clusters, which were later converted into radio images.
Results. We discovered PSR J1835−3259B, a 1.83-ms pulsar in NGC 6652; this is in a near-circular wide orbit of 28.7-h with an unidentified low-mass (∼0.2 M⊙) companion, likely a helium white dwarf. We derived a ten-year timing solution for this system. We also present measurements of scattering, flux densities, and spectral indices for some of the previously known pulsars in these GCs.
Conclusions. A significant fraction of the pulsars in these clusters have steep spectral indices. Additionally, we detected eight radio point sources not associated with any known pulsar positions in the radio images. There are four newly identified sources, three in NGC 6652 and one in NGC 6539, as well as one previously identified source in NGC 1851, NGC 6440, NGC 6544, and Terzan 5. Surprisingly, our images show that our newly discovered pulsar, PSR J1835−3259B, is the brightest pulsar in all GCs we have imaged; like other pulsars with broad profiles (Terzan 5 C and O), its flux density in the radio images is much larger than in its pulsations. This indicates that their pulsed emission is only a fraction of their total emission. The detection of radio sources outside the core radii but well within the tidal radii of these clusters show that future GC surveys should complement the search analysis by using the imaging capability of interferometers, and preferentially synthesise large number of search beams in order to obtain a larger field of view.
MIGHTEE: the nature of the radio-loud AGN population
Abstract:
We study the nature of the faint radio source population detected in the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Early Science data in the COSMOS field, focusing on the properties of the radio-loud active galactic nuclei (AGNs). Using the extensive multiwavelength data available in the field, we are able to classify 88 per cent of the 5223 radio sources in the field with host galaxy identifications as AGNs (35 per cent) or star-forming galaxies (54 per cent). We select a sample of radio-loud AGNs with redshifts out to z ∼ 6 and radio luminosities 1020 < L1.4 GHz/W Hz−1 < 1027 and classify them as high-excitation and low-excitation radio galaxies (HERGs and LERGs). The classification catalogue is released with this work. We find no significant difference in the host galaxy properties of the HERGs and LERGs in our sample. In contrast to previous work, we find that the HERGs and LERGs have very similar Eddington-scaled accretion rates; in particular we identify a population of very slowly accreting AGNs that are formally classified as HERGs at these low radio luminosities, where separating into HERGs and LERGs possibly becomes redundant. We investigate how black hole mass affects jet power, and find that a black hole mass ≳ 107.8 M⊙ is required to power a jet with mechanical power greater than the radiative luminosity of the AGN (Lmech/Lbol > 1). We discuss that both a high black hole mass and black hole spin may be necessary to launch and sustain a dominant radio jet.