A Decade of Black-Hole X-ray Binary Transients

Proceedings of Science 401 (2022)

Authors:

PA Charles, DAH Buckley, E Kotze, M Kotze, JK Thomas, P Gandhi, JA Paice, JP Lasota, JH Matthews, JF Steiner

Abstract:

The last decade has seen a significant gain in both space and ground-based monitoring capabilities, producing vastly better coverage of BH X-ray binaries during their (rare) transient events. This interval included two of the three brightest X-ray outbursts ever observed, namely V404 Cyg in 2015, and MAXI J1820+070 in 2018, as well as the outburst of Swift J1357.2-0933, the first such system to show variable period optical dipping. There are now superb multi-wavelength archives of these outbursts, both photometric and spectroscopic, that show substantial outflows in the form of jets and disc winds, and X-ray spectroscopy/timing that reveals how the inner accretion disc evolves. The ground-based AAVSO optical monitoring of the MAXI J1820+070 event was the most extensive ever obtained, revealing periodic variations that evolved as it approached its state transition. These modulations were of an amplitude never seen before, and suggested the development of an irradiation-driven disc warp that persisted through the transition. All these results have demonstrated the power of extensive multi-wavelength photometric and spectroscopic monitoring on all time-scales.

Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s

Nature Astronomy Springer Nature 6:7 (2022) 828-836

Authors:

Manisha Caleb, Ian Heywood, Kaustubh Rajwade, Mateusz Malenta, Benjamin Stappers, Ewan Barr, Weiwei Chen, Vincent Morello, Sotiris Sanidas, Jakob van den Eijnden, Michael Kramer, David Buckley, Jaco Brink, Sara Elisa Motta, Patrick Woudt, Patrick Weltevrede, Fabian Jankowski, Mayuresh Surnis, Sarah Buchner, Mechiel Christiaan Bezuidenhout, Laura Nicole Driessen, Rob Fender

Abstract:

The radio-emitting neutron star population encompasses objects with spin periods ranging from milliseconds to tens of seconds. As they age and spin more slowly, their radio emission is expected to cease. We present the discovery of an ultra-long period radio-emitting neutron star, PSR J0901-4046, with spin properties distinct from the known spin and magnetic-decay powered neutron stars. With a spin-period of 75.88 s, a characteristic age of 5.3 Myr, and a narrow pulse duty-cycle, it is uncertain how radio emission is generated and challenges our current understanding of how these systems evolve. The radio emission has unique spectro-temporal properties such as quasi-periodicity and partial nulling that provide important clues to the emission mechanism. Detecting similar sources is observationally challenging, which implies a larger undetected population. Our discovery establishes the existence of ultra-long period neutron stars, suggesting a possible connection to the evolution of highly magnetized neutron stars, ultra-long period magnetars, and fast radio bursts.

Upgraded GMRT survey for pulsars in globular clusters. I: Discovery of a millisecond binary pulsar in NGC 6652

(2022)

Authors:

T Gautam, A Ridolfi, Pcc Freire, Rs Wharton, Y Gupta, Sm Ransom, Ls Oswald, M Kramer, Me DeCesar

VLBI observations of GRB 201015A, a relatively faint GRB with a hint of Very High Energy gamma-ray emission

(2022)

Authors:

S Giarratana, L Rhodes, B Marcote, R Fender, G Ghirlanda, M Giroletti, L Nava, JM Paredes, ME Ravasio, M Ribo, M Patel, J Rastinejad, G Schroeder, W Fong, BP Gompertz, AJ Levan, P O'Brien

Looking at the distant universe with the MeerKAT array: discovery of a luminous OH megamaser at z > 0.5

Astrophysical Journal Letters IOP Science 931:1 (2022) L7

Authors:

Marcin Glowacki, Jordan D Collier, Amir Kazemi-Moridani, Bradley Frank, Hayley Roberts, Jeremy Darling, Hans-Rainer Kloeckner, Nathan Adams, Andrew J Baker, Matthew Bershady, Tariq Blecher, Sarah-Louise Blyth, Rebecca Bowler, Barbara Catinella, Laurent Chemin, Steven M Crawford, Catherine Cress, Romeel Dave, Roger Deane, Erwin de Blok, Jacinta Delhaize, Kenneth Duncan, Ed Elson, Sean February, Eric Gawiser, Peter Hatfield, Julia Healy, Patricia Henning, Kelley M Hess, Ian Heywood, Benne W Holwerda, Munira Hoosain, John P Hughes, Zackary L Hutchens, Matt Jarvis, Sheila Kannappan, Neal Katz, Dusan Keres, Marie Korsaga, Renee C Kraan-Korteweg, Philip Lah, Michelle Lochner, Natasha Maddox, Sphesihle Makhathini, Gerhardt R Meurer, Martin Meyer, Danail Obreschkow, Se-Heon Oh, Tom Oosterloo

Abstract:

In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (H i), radio surveys to probe the cosmic evolution of H i in galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep H i survey, we report the first untargeted detection of an OHM at z > 0.5, LADUMA J033046.20-275518.1 (nicknamed "Nkalakatha"). The host system, WISEA J033046.26-275518.3, is an infrared-luminous radio galaxy whose optical redshift z ≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshift z OH = 0.5225 ± 0.0001 rather than H i at lower redshift. The detected spectral line has 18.4σ peak significance, a width of 459 ± 59 km s-1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103 L ⊙, placing it among the most luminous OHMs known. The galaxy's far-infrared luminosity L FIR = (1.576 ±0.013) × 1012 L ⊙ marks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts.