Radio spectral properties of star-forming galaxies in the MIGHTEE-COSMOS field and their impact on the far-infrared-radio correlation

(2021)

Authors:

Fangxia An, M Vaccari, Ian Smail, MJ Jarvis, IH Whittam, CL Hale, S Jin, JD Collier, E Daddi, J Delhaize, B Frank, EJ Murphy, M Prescott, S Sekhar, AR Taylor, Y Ao, K Knowles, L Marchetti, SM Randriamampandry, Z Randriamanakoto

COALAS: I. ATCA CO(1-0) survey and luminosity function in the Spiderweb protocluster at z=2.16

Astronomy and Astrophysics EDP Sciences 652 (2021) A11

Authors:

S Jin, H Dannerbauer, B Emonts, P Serra, Cdp Lagos, Ap Thomson, L Bassini, M Lehnert, James Allison, Jb Champagne, B Indermuehle, Rp Norris, N Seymour, R Shimakawa, Cm Casey, C De Breuck, G Drouart, N Hatch, T Kodama, Y Koyama, P Macgregor, G Miley, R Overzier, Jm Perez-Martinez, Jm Rodriguez-Espinosa, H Roettgering, M Sanchez Portal, B Ziegler

Abstract:

We report a detailed CO(1-0) survey of a galaxy protocluster field at z = 2.16, based on 475 h of observations with the Australia Telescope Compact Array. We constructed a large mosaic of 13 individual pointings, covering an area of 21 arcmin2 and ±6500 km s-1 range in velocity. We obtained a robust sample of 46 CO(1-0) detections spanning z = 2.09 - 2.22, constituting the largest sample of molecular gas measurements in protoclusters to date. The CO emitters show an overdensity at z = 2.12 - 2.21, suggesting a galaxy super-protocluster or a protocluster connected to large-scale filaments of ∼120 cMpc in size. We find that 90% of CO emitters have distances >0.′5-4′ to the center galaxy, indicating that small area surveys would miss the majority of gas reservoirs in similar structures. Half of the CO emitters have velocities larger than escape velocities, which appears gravitationally unbound to the cluster core. These unbound sources are barely found within the R200 radius around the center, which is consistent with a picture in which the cluster core is collapsed while outer regions are still in formation. Compared to other protoclusters, this structure contains a relatively higher number of CO emitters with relatively narrow line widths and high luminosities, indicating galaxy mergers. We used these CO emitters to place the first constraint on the CO luminosity function and molecular gas density in an overdense environment. The amplitude of the CO luminosity function is 1.6 ± 0.5 orders of magnitude higher than that observed for field galaxy samples at z ∼ 2, and one order of magnitude higher than predictions for galaxy protoclusters from semi-analytical SHARK models. We derive a high molecular gas density of 0.6 - 1.3 × 109Mpdbl cMpc-3 for this structure, which is consistent with predictions for cold gas density of massive structures from hydro-dynamical DIANOGA simulations.

Revisiting the archetypical wind accretor Vela X-1 in depth

Astronomy & Astrophysics EDP Sciences 652 (2021) a95

Authors:

P Kretschmar, I El Mellah, S Martínez-Núñez, F Fürst, V Grinberg, AAC Sander, J van den Eijnden, N Degenaar, J Maíz Apellániz, F Jiménez Esteban, M Ramos-Lerate, E Utrilla

The evolving radio jet from the neutron star X-ray binary 4U 1820$-$30

ArXiv 2107.12491 (2021)

Authors:

TD Russell, N Degenaar, J van den Eijnden, M Del Santo, A Segreto, D Altamirano, A Beri, M Diaz Trigo, JCA Miller-Jones

MIGHTEE-HI: discovery of an H I-rich galaxy group at z = 0.044 with MeerKAT

Monthly Notices of the Royal Astronomical Society Oxford University Press 506:2 (2021) 2753-2765

Authors:

Shilpa Ranchod, Roger P Deane, Anastasia Ponomareva, Tariq Blecher, Bradley S Frank, Matthew Jarvis, Natasha Maddox, Wanga Mulaudzi, Marcin Glowacki, Kelley M Hess, Madalina Tudorache, Nathan J Adams, Rebecca Bowler, Jordan D Collier, Russ Taylor, Lourdes Verdes-Montenegro

Abstract:

We present the serendipitous discovery of a galaxy group in the XMM-LSS field with MIGHTEE Early Science observations. 20 galaxies are detected in H I in this z ∼ 0.044 group, with a 3σ column density sensitivity of NHI=1.6×1020cm−2⁠. This group has not been previously identified, despite residing in a well-studied extragalactic legacy field. We present spatially resolved H I total intensity and velocity maps for each of the objects which reveal environmental influence through disturbed morphologies. The group has a dynamical mass of log10(Mdyn/M⊙)=12.32⁠, and is unusually gas-rich, with an H I-to-stellar mass ratio of log10(f∗HI)=−0.2⁠, which is 0.7 dex greater than expected. The group’s high H I content, spatial, velocity, and identified galaxy type distributions strongly suggest that it is in the early stages of its assembly. The discovery of this galaxy group is an example of the importance of mapping spatially resolved H I in a wide range of environments, including galaxy groups. This scientific goal has been dramatically enhanced by the high sensitivity, large field-of-view, and wide instantaneous bandwidth of the MeerKAT telescope.