The impact of glitches on young pulsar rotational evolution
(2021)
Abstract:
We report on a timing programme of 74 young pulsars that have been observed by the Parkes 64-m radio telescope over the past decade. Using modern Bayesian timing techniques, we have measured the properties of 124 glitches in 52 of these pulsars, of which 74 are new. We demonstrate that the glitch sample is complete to fractional increases in spin-frequency greater than $\Delta\nu^{90\%}_{g}/\nu \approx 8.1 \times 10^{-9}$. We measure values of the braking index, $n$, in 33 pulsars. In most of these pulsars, their rotational evolution is dominated by episodes of spin-down with $n > 10$, punctuated by step changes in the spin-down rate at the time of a large glitch. The step changes are such that, averaged over the glitches, the long-term $n$ is small. We find a near one-to-one relationship between the inter-glitch value of $n$ and the change in spin-down of the previous glitch divided by the inter-glitch time interval. We discuss the results in the context of a range of physical models.The evolving radio jet from the neutron star X-ray binary 4U 1820−30
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 508:1 (2021) l6-l11
A broadband radio study of PSR J0250+5854: the slowest-spinning radio pulsar known
(2021)
Echoes of the past: ultra-high energy cosmic rays accelerated by radio galaxies, scattered by starburst galaxies
ArXiv 2108.08879 (2021)
The 2019 outburst of the 2005 classical nova V1047 Cen: a record breaking dwarf nova outburst or a new phenomenon?
(2021)