HELP: the Herschel Extragalactic Legacy Project

Monthly Notices of the Royal Astronomical Society Oxford University Press 507:1 (2021) 129-155

Authors:

R Shirley, K Duncan, Mc Campos Varillas, Pd Hurley, K Malek, Y Roehlly, Mwl Smith, H Aussel, T Bakx, V Buat, D Burgarella, N Christopher, S Duivenvoorden, S Eales, A Efstathiou, Ea Gonzalez Solares, M Griffin, M Jarvis, B Lo Faro, L Marchetti, I McCheyne, A Papadopoulos, K Penner, E Pons, M Prescott, E Rigby, H Rottgering, A Saxena, J Scudder, M Vaccari, L Wang, Sj Oliver

Abstract:

We present the Herschel Extragalactic Legacy Project (HELP). This project collates, curates, homogenizes, and creates derived data products for most of the premium multiwavelength extragalactic data sets. The sky boundaries for the first data release cover 1270 deg2 defined by the Herschel SPIRE extragalactic survey fields; notably the Herschel Multi-tiered Extragalactic Survey (HerMES) and the Herschel Atlas survey (H-ATLAS). Here, we describe the motivation and principal elements in the design of the project. Guiding principles are transparent or 'open' methodologies with care for reproducibility and identification of provenance. A key element of the design focuses around the homogenization of calibration, meta data, and the provision of information required to define the selection of the data for statistical analysis. We apply probabilistic methods that extract information directly from the images at long wavelengths, exploiting the prior information available at shorter wavelengths and providing full posterior distributions rather than maximum-likelihood estimates and associated uncertainties as in traditional catalogues. With this project definition paper, we provide full access to the first data release of HELP; Data Release 1 (DR1), including a monolithic map of the largest SPIRE extragalactic field at 385 deg2 and 18 million measurements of PACS and SPIRE fluxes. We also provide tools to access and analyse the full HELP data base. This new data set includes far-infrared photometry, photometric redshifts, and derived physical properties estimated from modelling the spectral energy distributions over the full HELP sky. All the software and data presented is publicly available.

The nature of sub-millimetre galaxies I: a comparison of AGN and star-forming galaxy SED fits

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 505:1 (2021) 1509-1529

Authors:

T Shanks, B Ansarinejad, RM Bielby, I Heywood, N Metcalfe, L Wang

THEZA: TeraHertz Exploration and Zooming-in for Astrophysics

Experimental Astronomy Springer Nature 51:3 (2021) 559-594

Authors:

Leonid I Gurvits, Zsolt Paragi, Viviana Casasola, John Conway, Jordy Davelaar, Heino Falcke, Rob Fender, Sándor Frey, Christian M Fromm, Cristina García Miró, Michael A Garrett, Marcello Giroletti, Ciriaco Goddi, José-Luis Gómez, Jeffrey van der Gucht, José Carlos Guirado, Zoltán Haiman, Frank Helmich, Elizabeth Humphreys, Violette Impellizzeri, Michael Kramer, Michael Lindqvist, Hendrik Linz, Elisabetta Liuzzo, Andrei P Lobanov, Yosuke Mizuno, Luciano Rezzolla, Freek Roelofs, Eduardo Ros, Kazi LJ Rygl, Tuomas Savolainen, Karl Schuster, Tiziana Venturi, Martina C Wiedner, J Anton Zensus

The hybrid radio/X-ray correlation of the black hole transient MAXI J1348-630

Monthly Notices of the Royal Astronomical Society Oxford University Press 505:1 (2021) L58-L63

Authors:

F Carotenuto, S Corbel, E Tremou, Td Russell, A Tzioumis, Rp Fender, Pa Woudt, Se Motta, Jca Miller-Jones, Aj Tetarenko, Gr Sivakoff

Abstract:

Black hole (BH) low mass X-ray binaries in their hard spectral state are found to display two different correlations between the radio emission from the compact jets and the X-ray emission from the inner accretion flow. Here, we present a large data set of quasi-simultaneous radio and X-ray observations of the recently discovered accreting BH MAXI J1348–630 during its 2019/2020 outburst. Our results span almost six orders of magnitude in X-ray luminosity, allowing us to probe the accretion–ejection coupling from the brightest to the faintest phases of the outburst. We find that MAXI J1348–630 belongs to the growing population of outliers at the highest observed luminosities. Interestingly, MAXI J1348–630 deviates from the outlier track at LX ≲ 7 × 1035(D/2.2  kpc)2 erg s−1 and ultimately rejoins the standard track at LX ≃ 1033(D/2.2 kpc)2 erg s−1, displaying a hybrid radio/X-ray correlation, observed only in a handful of sources. However, for MAXI J1348–630 these transitions happen at luminosities much lower than what observed for similar sources (at least an order of magnitude). We discuss the behaviour of MAXI J1348–630 in light of the currently proposed scenarios and highlight the importance of future deep monitorings of hybrid correlation sources, especially close to the transitions and in the low luminosity regime.

A self-lensing binary massive black hole interpretation of quasi-periodic eruptions (vol 503, pg 1703, 2021)

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Oxford University Press (OUP) 504:4 (2021) 5512-5512

Authors:

Adam Ingram, Sara E Motta, Suzanne Aigrain, Aris Karastergiou

Abstract:

This is an erratum to the paper ‘A self-lensing binary massive black hole interpretation of quasi-periodic eruptions’ (2021, MNRAS, 503, 1703–1716). In the originally published version of this manuscript, one of the references was incorrectly typeset. The incorrect reference was Bose R., Varghese N., 2021, ApJ, 909, 82. The correct reference is Raj A., Nixon C. J., 2021, ApJ, 909, 82. This has now been corrected online. The Publisher apologizes for this error.