Reply to Comment on Spin-selective reactions of radical pairs act as quantum measurements

ArXiv 1104.0604 (2011)

Authors:

JA Jones, Kiminori Maeda, UE Steiner, PJ Hore

Abstract:

In his Comment on a recent paper by two of us Kominis claims that the recently proposed quantum measurement model for spin-selective reactions of radical pairs leads to ambiguous predictions in a simple case. Here we show that this claim is based on a confusion between the unreacted and unrecombined portions of the radical pairs, and to an incorrect interpretation of the improper density matrices used in both our model and the conventional Haberkorn model of such reactions. We further show that if this error is corrected then the supposed ambiguity is resolved.

Reaction operators for spin-selective chemical reactions of radical pairs

ArXiv 1103.5875 (2011)

Authors:

Jonathan A Jones, Kiminori Maeda, Peter J Hore

Abstract:

Spin-selective reactions of radical pairs have traditionally been modelled theoretically by adding phenomenological rate equations to the quantum mechanical equation of motion of the radical pair spin density matrix. More recently an alternative set of rate expressions, based on a quantum measurement approach, has been suggested. Here we show how these two reaction operators can be seen as limiting cases of a more general reaction scheme.

Magnetic field sensors using 13-spin cat states

Physical Review A - Atomic, Molecular, and Optical Physics 82:2 (2010)

Authors:

S Simmons, JA Jones, SD Karlen, A Ardavan, JJL Morton

Abstract:

Measurement devices could benefit from entangled correlations to yield a measurement sensitivity approaching the physical Heisenberg limit. Building upon previous magnetometric work using pseudoentangled spin states in solution-state NMR, we present two conceptual advancements to better prepare and interpret the pseudoentanglement resource. We apply these to a 13-spin cat state to measure the local magnetic field with a 12.2 sensitivity increase over an equivalent number of isolated spins. © 2010 The American Physical Society.

Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments.

J Magn Reson 203:1 (2010) 1-10

Authors:

Sebastian Kemper, Mitul K Patel, James C Errey, Benjamin G Davis, Jonathan A Jones, Timothy DW Claridge

Abstract:

In the application of saturation transfer difference (STD) experiments to the study of protein-ligand interactions, the relaxation of the ligand is one of the major influences on the experimentally observed STD factors, making interpretation of these difficult when attempting to define a group epitope map (GEM). In this paper, we describe a simplification of the relaxation matrix that may be applied under specified experimental conditions, which results in a simplified equation reflecting the directly transferred magnetisation rate from the protein onto the ligand, defined as the summation over the whole protein of the protein-ligand cross-relaxation multiplied by with the fractional saturation of the protein protons. In this, the relaxation of the ligand is accounted for implicitly by inclusion of the experimentally determined longitudinal relaxation rates. The conditions under which this "group epitope mapping considering relaxation of the ligand" (GEM-CRL) can be applied were tested on a theoretical model system, which demonstrated only minor deviations from that predicted by the full relaxation matrix calculations (CORCEMA-ST) [7]. Furthermore, CORCEMA-ST calculations of two protein-saccharide complexes (Jacalin and TreR) with known crystal structures were performed and compared with experimental GEM-CRL data. It could be shown that the GEM-CRL methodology is superior to the classical group epitope mapping approach currently used for defining ligand-protein proximities. GEM-CRL is also useful for the interpretation of CORCEMA-ST results, because the transferred magnetisation rate provides an additional parameter for the comparison between measured and calculated values. The independence of this parameter from the above mentioned factors can thereby enhance the value of CORCEMA-ST calculations.

Spin-selective reactions of radical pairs act as quantum measurements

ArXiv 1002.2377 (2010)

Authors:

Jonathan A Jones, Peter J Hore

Abstract:

Since the 1970s, spin-selective reactions of radical pairs have been modelled theoretically by adding phenomenological rate equations to the quantum mechanical equation of motion of the radical pair spin density matrix. Here, using a quantum measurement approach, we derive an alternative set of rate expressions which predict a faster decay of coherent superpositions of the singlet and triplet radical pair states. The difference between the two results, however, is not dramatic and would probably be difficult to distinguish experimentally from decoherence arising from other sources.