Chalcogenide Phase Change Material for Active Terahertz Photonics

Advanced Materials Wiley 31:12 (2019) e1808157

Authors:

Prakash Pitchappa, Abhishek Kumar, Saurav Prakash, Hariom Jani, Thirumalai Venkatesan, Ranjan Singh

Strain engineering a multiferroic monodomain in thin-film BiFeO3

Physical Review Applied American Physical Society 11:2 (2019) 024035

Authors:

Noah Waterfield Price, Anuradha Vibhakar, Roger Johnson, J Schad, W Saenrang, A Bombardi, Francis Chmiel, CB Eom, Paolo Radaelli

Abstract:

The presence of domains in ferroic materials can negatively affect their macroscopic properties and hence their usefulness in device applications. From an experimental perspective, measuring materials comprising multiple domains can complicate the interpretation of material properties and their underlying mechanisms. In general, BiFeO3 films tend to grow with multiple magnetic domains and often contain multiple ferroelectric and ferroelastic domain variants. By growing (111)-oriented BiFeO3 films on an orthorhombic TbScO3 substrate, we are able to overcome this, and, by exploiting the magnetoelastic coupling between the magnetic and crystal structures, bias the growth of a given magnetic-, ferroelectric-, and structural-domain film. We further demonstrate the coupling of the magnetic structure to the ferroelectric polarisation by showing the magnetic polarity in this domain is inverted upon 180° ferroelectric switching.

The magnetic structure and spin-flop transition in the A-site columnar-ordered quadruple perovskite $\mathrm{TmMn_3O_6}$

(2019)

Authors:

AM Vibhakar, DD Khalyavin, P Manuel, L Zhang, K Yamaura, PG Radaelli, AA Belik, RD Johnson

Magnetic structure and spin-flop transition in the A-site columnar-ordered quadruple perovskite TmMn3O6

PHYSICAL REVIEW B 99:10 (2019) ARTN 104424

Authors:

AM Vibhakar, DD Khalyavin, P Manuel, L Zhang, K Yamaura, PG Radaelli, AA Belik, RD Johnson

Helical magnetism in Sr-doped CaMn7O12 films

Physical Review B American Physical Society 98:22 (2018) 224419

Authors:

A Huon, Anuradha M Vibhakar, AJ Grutter, JA Borchers, S Disseler, Y Liu, W Tian, F Orlandi, P Manuel, DD Khalyavin, Y Sharma, A Herklotz, HN Lee, Fitzsimmons, Roger Johnson, SJ May

Abstract:

Noncollinear magnetism can play an important role in multiferroic materials but is relatively understudied in oxide heterostructures compared to their bulk counterparts. Using variable temperature magnetometry and neutron diffraction, we demonstrate the presence of helical magnetic ordering in CaMn7O12 and Ca1−xSrxMn7O12 (for x up to 0.51) thin films. Consistent with bulk Ca1−xSrxMn7O12, the net magnetization increases with Sr doping. Neutron diffraction confirms that the helical magnetic structure remains incommensurate at all values of x, while the fundamental magnetic wavevector increases upon Sr substitution. This result demonstrates a chemical-based approach for tuning helical magnetism in quadruple perovskite films and enables future studies of strain and interfacial effects on helimagnetism in oxide heterostructures.